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Abstract—Symbiotic relationships are one of several phenom-
ena that can be observed in nature. These relationships consist
of interactions between organisms and can lead to benefits or
damages to those involved. In an optimization context, symbiotic
relationships can be used to perform information exchange
between populations of candidate solutions to a given problem.
This paper presents an information exchange model inspired by
symbiotic relationships and applies the model to unconstrained
single-objective continuous optimization problems. The symbiotic
relationships are modelled using the Pareto dominance criteria
inside a computational ecosystem for optimization. The Artificial
Bee Colony algorithm is used to compound the populations
of the ecosystem. Four models of relationships are analyzed:
slavery, competition, altruism and mutualism. Thirty uncon-
strained single-objective continuous benchmark functions with
high number of dimensions (d = 200) are tested and obtained
results compared. Results suggest that the proposed model for
information exchange favors the balance between exploration and
exploitation leading to better results.

I. INTRODUCTION

From observations and understanding of natural phenom-
ena, several technologies have been developed for different
applications. For example, the sonar was developed inspired
by the echolocation of bats and dolphins, airplanes inspired
by birds, among others [1]. In the same way, Nature has
inspired the development of biologically plausible algorithms.
The main feature of bio-plausible systems is the use of natural
inspirations at some degree where the designers of these
systems generally aim to achieve biologically plausible func-
tionalities in non-biological contexts, such as the optimization
of engineering problems [2]. These algorithms are recognized
and are part of a research field known as Natural Computing
[1][3].

Symbiotic relationships are one of several phenomena that
can be observed in nature. These relationships are carried
by interactions that individuals perform with each other in
an ecosystem and are diverse as mutualism, amensalism,
predatism, society, slavery, among others [4].

Symbiotic relationships play an important role in the ecosys-
tem biological control (e.g., diversity, extinction, food chain).
Moreover, an organism can not live alone. This means that,
directly or indirectly, each organism depends on another to
feed, reproduce or survive. Another important point is that
symbiotic relationships are responsible for the coevolution of

species. For example, predators evolve their tactics to capture
preys, and preys evolve their tactics to avoid predators. This
is a phenomenon called arms-race [4].

Modeling symbiotic relationships as part of optimization
algorithms increases their biological plausibility, i.e. makes
them more similar to biological systems. Moreover, the inclu-
sion of symbiotic relationships can improve the coevolution
of populations of candidate solutions as well as influencing
their diversities. The main hypothesis that we investigate in
this work is if a system with more biologically plausible
features is able to enhance its performance. The inspiration is
that biological systems are able to handle complex problems
and tasks naturally [2]. It is important to emphasize that a
particular feature of an optimization algorithm is biologically
plausible when it is similar to the biological phenomenon in
which it is inspired.

The use of interactions between populations and information
exchange are not new in the field of optimization. An example
is the well-known island model GA [5] and other algorithms
that apply the same concept (e.g., PSO [6] and ACO [7]).
In the present work the topologies are not static and do not
follow a standard formation like ring, star or fully connected
as performed by the island model. The topologies are dynamic,
i.e., topologies can assume different patterns [8].

The concept of symbiotic relationships has already been
applied as optimization routines. In [9] it is proposed an opti-
mization algorithm inspired by relationships of commensalism,
predatism and mutualism to solve continuous functions and in
[10] a host-parasite model is applied to solve big deceptive
problems. This work presents a different information exchange
model inspired by symbiotic relationships that is based on the
Pareto dominance criteria.

The model is applied in an ecologically-inspired approach
for optimization called ECO[11][12]. The well known Arti-
ficial Bee Colony algorithm [13] is used to compound the
populations of the ecosystem [8]. The ecologically-based al-
gorithm is a co-evolutionary framework and employs multiple
populations for unconstrained single-objective continuous op-
timization. Thus, the proposed model defines different ways to
interact these populations. Interactions are conducted through
the exchange of information between two distinct populations.
Both the number of individuals and which individuals are



selected in these interactions are defined probabilistically.
This feature is the main difference from the original model
described in [11][12].

This paper is structured as follows. Section II provides
an overview of the standard ecologically-inspired algorithm.
Section III presents the computational model of symbiotic
relationships. The experiments and results are presented in
Section IV. Finally, Section V concludes the paper with final
remarks and future research.

II. THE COMPUTATIONAL ECOSYSTEM FOR OPTIMIZATION

The ecologically-inspired algorithm, named ECO, repre-
sents a perspective to apply optimization strategies cooper-
atively in an ecosystemic context [11]. ECO is composed by
populations of individuals (Q) and each population evolves
according to an optimization strategy.

The ecological inspiration stems from the use of some
ecological concepts, such as habitats, ecological relationships
and ecological successions [4]. A habitat is the actual location
in the environment where an organism lives and consists
of all the physical and biological resources available. In
this way, populations of individuals that are scattered in the
search surface and established in the same region constitute
an ecological habitat. The ecosystem can be depicted in
three levels. The lower level represents the problem-dependent
search space that defines a hypersurface and, as well as in
nature, populations can move around through all of it. The
movement of populations can be observed by changing the
values of variables that affect function f(.). The system is
composed by several habitats that can also interact to each
other.

With the definition of habitats, two categories of ecological
relationships can be defined. Intra-habitats relationships that
occur between populations inside each habitat, and inter-
habitats relationships that occur between habitats [4].

In ECO, the mating relationship represents the intra-habitats
information exchange. Populations belonging to the same
habitat can establish a reproductive link between their indi-
viduals, favoring the co-evolution of the involved populations
through competition for mating. Populations belonging to
different habitats are reproductively isolated. The intra-habitats
communication topologies represents the intermediate level of
ECO.

Great migrations represents inter-habitats relationships. In-
dividuals belonging to a given habitat can migrate to other
habitats aiming at identifying promising areas for survival
and mating. The inter-habitats communication topologies rep-
resents the upper level of the system.

Inside the ecological metaphor, ecological successions rep-
resent the transformational process of the system. In this
process, population groups are formed (habitats), relationships
between populations are established and the system stabilizes
by means of the self-organization of its components.

It is important to highlight that the concept of interactions
between populations is not new. An example is the well-known
island model GA [5] and other algorithms that apply the same

concept (e.g., PSO [6] and ACO [7]). However, the approach
used in ECO differs from the others by presenting a new level
of abstraction for the topologies of communication. There are
two different topologies of communication, being the intra and
inter- habitats communications. The formation of topologies
is done probabilistically and is influenced by the distribution
of populations on the surface of function f(.). It can also
be observed that the topologies are not static and do not
follow a standard formation like ring, star or fully connected
as performed by the island model. The topologies are dynamic,
i.e., topologies can assume different patterns [8] at every given
moment t.

Another important feature is that ECO enables the use
of any optimization algorithm to evolve the populations co-
operatively. Each population can behave according to the
mechanisms of intensification and diversification, tuned by the
control parameters, specific of an optimization strategy.

Algorithm 1 shows the pseudo-code of ECO. The ecological
succession loop (lines 3 to 12) refers to iterations of the
computational ecosystem. In line 4, evolutive period, each
population evolves (generations/iterations) according to its
own criteria (the optimization algorithm). At the end of the
evolutive period of all populations it is necessary to identify
the region of reference for each population (line 5). The metric
chosen to define the region of reference is the centroid −→ci
and represents the point in the space where there is a longest
concentration of individuals of population i.

A key concept in the ECO system is the definition of
habitats (line 6 in Algorithm 1). The ECO approach uses
the single-link hierarchical clustering algorithm to set-up the
habitats where each cluster represents a habitat. Hence, the
habitats are defined probabilistically taking into account the
distance information returned by the clustering algorithm [8].

Once defined the habitats, the next step in Algorithm 1 (line
7) is the definition of the communication topology for each
habitat. This topology is probabilistically defined by using the
distance information returned by a single linkage clustering
algorithm [8] in such a way that the closer two population
are from each other the higher is the chance of these two
populations communicate. The opposite happens with farthest
populations. After that, the mating ecological relationship
between adjacent populations occurs (line 8). In line 9, the
topology for interaction among habitats is randomly defined.
This inter-habitats topology TH(t) is used for the migrations
ecological relationship (line 10). The main loop continues until
the ecological succession cycle reaches a maximum predefined
value. For a detailed description refer to [8].

The ECO algorithm parameters are: number of populations
(N -POP ) that will be co-evolved, initial population size
(POP -SIZE), number of cycles for ecological successions
(ECO-STEP ), size of the evolutive period (EV O-STEP )
that represents number of function evaluations in each ECO-
STEP , and tournament size (T -SIZE) that is used to select
individuals for intra-habitats communication.



Algorithm 1 Pseudo-code for ECO
1: Let i = 1, ..., N -POP , j = 1, ..., NH and t = 0;
2: Initialise each population Qt

i with ni random candidate solutions;
3: while stop criteria not satisfied do {Ecological succession cycles}
4: Perform evolutive period for each population Qt

i ;
5: Identify the region of reference −→c i for each population Qt

i ;
6: Using the −→c i values, define the NH habitats;
7: For each habitat Ht

j define the communication topology CT t
j between

populations Qt
i ;

8: For each topology CT t
j , perform interactions between populations Qt

i ;
9: Define communication topology THt between Ht

j habitats;
10: Perform interactions between Ht

j habitats according to THt;
11: Increase t;
12: end while

III. COMPUTATIONAL MODEL OF SYMBIOTIC
RELATIONSHIPS

In order to increase the biological plausibility of the ECO
approach, a new strategy for information exchange is added
and it is inspired by the concept of symbiotic relationships.
Symbiotic relationships are interactions that individuals per-
form with each other in the ecosystem resulting in benefits,
damages or do not affecting those involved. In Nature, it is
possible to observe several types of symbiotic relationships.
The computational model is inspired by relationships of mu-
tualism, altruism, slavery and competition.

A computational model inspired by symbiotic relationships
should produce benefits and damages in populations of candi-
date solutions similarly to the biological phenomenon. There-
fore, to model a symbiotic relationship it is necessary to define
the concept of benefit and damages in the optimization context.
The aim of an optimization strategy is to find promising
regions in the search surface of a function f(.). In this way,
the optimization process is benefited when the population
of candidate solutions approaches a promising region. The
opposite occurs when the optimization process is damaged.
The population moves away from an promising region.

Symbiotic relationships are applied in intra-habitats com-
munication phase of ECO algorithm by replacing the mating
relationship that occurs in line 8 of Algorithm 1 by one of the
possible symbiotic relationships. Intra-habitats communication
topology (CT ) is used to select the pair of populations that will
interact to each other. Each population Qi in the computational
ecosystem will interact with another population if it is part of
a habitat with two or more populations.

The proposed strategy is based on the Pareto dominance
criteria [14] and it is used to define which individuals of two
interacting populations (I and J) will exchange information. To
find the non-dominated front the fitness values of individuals
are used. Hence, the distribution of points on the Pareto
front is directly influenced by the phenotypic diversity of
involved populations. The individuals are grouped in pairs,
one from each population, and their fitness values are used to
create points on a Pareto front. According with the dominance
criteria of each symbiotic relationship, described next, all non-
dominated pairs in the Pareto front are identified and selected
to exchange information. This differs from standard ECO in

which only one pair of solutions exchanges information within
two interacting populations in the intra-habitat topology.

Benefits and damages of symbiotic relationships are related
with the proposed model through the dominance criteria. For
example, if the relationship benefits both populations, then
their best individuals are selected. Otherwise, if the relation-
ship damages the populations, then their worst individuals are
selected. Figure 1 shows the Pareto front for each symbiotic
relationship for a minimization problem. The x-axis and y-
axis represent the fitness values of individuals in population I
and J , respectively. In Figure 1, the signs (+) and (-) indicate
benefit and damage to populations I and J , respectively.

Fig. 1. Pareto front for each symbiotic relationship.

The mutualistic relationship occurs when two or more or-
ganisms interact and generate benefits for both. In this analogy,
the selection of non-dominated individuals for mutualism is
situated at the bottom-left distribution of pairs of individuals
(Ix, Jy). The dominance criteria is minimization for both
populations. In this relationship populations are cooperatives,
sharing best solutions. This is a relationship of the type (+, +)
for (I , J), respectively.

In the slavery relationship, the selection of non-dominated
individuals is situated at the bottom-right distribution of pairs
of individuals (Ix, Jy). The dominance criteria is maximiza-
tion for population I and minimization for population J .
In this relationship population I takes advantage of another
population with the intention of improving itself, regardless of
population J and puts his worst individuals to exchange in-
formation with the best individuals of J in the non-dominated
pairs. This is a relationship of the type (+, -) for (I , J),
respectively.

The altruism relationship occurs when an organism is
harmed without the expectation of reciprocity or compen-
sation for that action in order to benefit another organism.
In this analogy, the selection of non-dominated individuals
by altruism is situated at the top-left distribution of pairs of
individuals (Ix, Jy). The dominance criteria is minimization
for population I and maximization for population J . In this
relationship population, I does not have interest of improving
itself and puts his best individuals to exchange information
with the worst individuals of J in the non-dominated pairs.
This is a relationship of the type (-, +) for (I , J), respectively.

The competition relationship occurs when organisms com-
pete against each other for environment resources and harm
everyone involved. In this analogy, the selection of non-
dominated individuals is situated at the top-right distribution
of pairs of individuals (Ix, Jy). The dominance criteria is
maximization for both populations. In this relationship both



populations do not have interest to cooperate with each other.
This is a relationship of the type (-, -) for (I , J), respectively.

Algorithm 2 shows the general pseudo-code for the sym-
biotic relationships model. The algorithm starts getting two
populations I and J (line 1) obtained from the intra-habitats
communication topology (CT ). Next, pairs of individuals
(Ix, Jy) with x and y = 1, . . . , POP -SIZE, are generated
randomly (line 2). Pairs of individuals are generated randomly
to avoid any kind of bias in the selection process. Randomly
paired individuals are used to identify the Pareto front. The
Pareto front (line 3) is the set of non-dominated pairs defined
by the type of symbiotic relationship. The setting of a Pareto
front determines how individuals will be selected and differ-
entiates the symbiotic relationships. For each non-dominated
pair the exchange of information is performed through uniform
crossover (line 5). This operator generates two new individuals
Ia and Jb. For each new individual it is verified whether it is
better than its respective parent. If true, the new individual
replaces its parent. Otherwise, the new individual is discarded
(lines 6 to 11).

Algorithm 2 Model of Symbiotic Relationships
1: Input: POP I, POP J
2: Generate POP SIZE pairs of individuals
3: Find non-dominated pairs {Symbiotic selection}
4: for Each non-dominated pair do
5: Exchange of information between individuals
6: if Ia is better than POP Ia then
7: Replaces POP Ia by Ia
8: end if
9: if Jb is better than POP Jb then

10: Replaces POP Jb by Jb
11: end if
12: end for

IV. EXPERIMENTS AND RESULTS

All algorithms were developed using C++ language and ex-
periments were run on an AMD Phenom II X4 (2.80GHz) with
4GB RAM, under Linux operating system. The experiments
were conducted using thirty test functions extensively used in
the literature for testing optimization methods [15]. Table I
shows the domain and global minimum, respectively, for each
test function.

For each test function, 30 independent runs were performed
with randomly initialized populations. In all experiments the
number of dimensions (d) is equal to 200 and the parameters
used were N -POP = 200, ECO-STEP = 500, EV O-
STEP = 200, POP -SIZE = 10, T -SIZE = 5 and a
crossover rate of 50%. With this adjustment of parameters, the
total number of functions evaluations was 100,000 evaluations
for each population.

In all experiments, the Artificial Bee Colony Optimization
(ABC) algorithm [13] was used to compound all ECO ap-
proaches in a homogeneous model, with parameter limit equal
to 100, i.e. all populations use this algorithm with the same
control parameters. All parameters were defined empirically
[11].

Experiments were conducted using 6 different approaches.
The first approach, ECO, refers to the canonical ecologically-
inspired system explained in Section II. The ECOs, ECOc,
ECOa and ECOm approaches refer to the ecological system
using the symbiotic relationships of slavery, competition, al-
truism, and mutualism, respectively, as explained in Section
III. Finally, the sixth approach, ABC, refers to the evolution
of completely isolated populations of ABC algorithm, i.e.,
evolving without exchanging information.

Table II shows the results obtained. There are seven columns
where the first column identifies the function and the remain-
ing columns identify the following approaches: ABC, ECO,
ECOs, ECOc, ECOa, and ECOm, respectively. The line
of each function identifies the mean and standard deviation
of the results obtained for each approach. To better analyze
the results obtained, the pairwise comparison of Mutualism
against other approaches was performed using the Wilcoxon-
Rank Sum statistical test. The ECOm approach was chosen as
baseline approach due to verified best results. A significance
level of 5% was employed. Best results that are statistically
significant are highlighted in bold. From Table II, its is
possible to observe that for 14 functions the ECOm approach
achieved better results.

The last row in Table II summarizes the performance of
each approach when comparing with ECOm. (B) refers to
the number of functions in which the referred approach was
statistically better then ECOm, (S) shows the number of
functions in which the referred approach obtained statistically
the same results of ECOm, and (W) shows the number of
functions in which the referred approach obtained statistically
worse results when compared to ECOm. Figure 2 shows the
performance of each approach compared to ECOm.

ABC ECO ECO-S ECO-C ECO-A
0

10

20

30

0
2

0 1 0

3 3

13

10 9

27
25

17
19

21

best same worst

Fig. 2. Performance of each approach compared to ECOm

Analyzing ABC and ECO approaches we can observe
that ECO obtained much better results than ABC. The use
of co-evolutionary populations through ecological interactions
enhance the performance gain [8].



Function Domain Min. Function Domain Min.
1 Ackley [−32, 32]d 0 16 Schaffer F6 [−100, 100]d 0
2 Egg Holder [−512, 512]d −915.61991n+ 862.10466 17 Schaffer F7 [−100, 100]d 0
3 Generalized Holzman [−10, 10]d 0 18 Schwefel 2.22 [−10, 10]d 0
4 Generalized Penalized Func. 1 [−50, 50]d 1.57e-032 19 Shifted Ackley [−32, 32]d -140
5 Generalized Penalized Func. 2 [−50, 50]d 1.34e-032 20 Shifted Griewank [−600, 600]d -180
6 Generalized Schwefels 2.26 [−500, 500]d -418.982887272433 21 Shifted Rastrigin [−5.12, 5.12]d -330
7 Griewank [−600, 600]d 0 22 Shifted Rosenbrock [−100, 100]d 390
8 Levy [−10, 10]d 0 23 Shifted Schaffer [−100, 100]d 0
9 Michalewitz [0, π]d −0.99864n+ 0.30271 24 Shifted Schwefel Problem 2.21 [−100, 100]d -450
10 Molecular Potential Energy [0, 5]d −0.0411183034n 25 Shifted Sphere [−100, 100]d -450
11 Multimod [−10, 10]d 0 26 Shubert [−10, 10]d -24.06
12 Powell [−4, 5]d 0 27 Sphere [−100, 100]d 0
13 Rana [−512, 512]d −511.70430n+ 511.68714 28 Step [−100, 100]d 0
14 Rastrigin [−5.12, 5.12]d 0 29 StretchedV [−10, 10]d 0
15 Rosenbrock [−30, 30]d 0 30 Zakharov [−5, 10]d 0

TABLE I
TEST FUNCTIONS EMPLOYED IN THE EXPERIMENTS.

f ABC ECO ECOs ECOc ECOa ECOm

1 1,75e-3±2,95e-4 7.48e-07±5.01e-07 1.58e-08±1.82e-09 2.47e-07±2.18e-08 1.71e-08±1.60e-09 7.41e-10±6.43e-11
2 -122813±1230.56 -123822±3193.63 -132531±2903.31 -130473±2051.32 -131480±2519.38 -131987±2327
3 4.89e-16±2.07e-16 1.02e-24±8.13e-25 5.98e-30±2.71e-30 3.33e-26±2.24e-26 1.25e-29±6.99e-30 1.61e-33±5.9e-34
4 2.51e-09±7.27e-10 7.35e-16±6.89e-16 1.45e-18±5.22e-19 1.68e-16±3.89e-17 1.22e-18±3.35e-19 2.69e-20±1.93e-21
5 1.92e-06±4.788-07 3,66e-4±1,97e-3 1.22e-07±6.32e-07 1.91e-12±2.63e-12 4.12e-15±3.1e-15 1.11e-17±3.56e-18
6 -395.84±1.42 -417.29±1.15 -418.98±1.13e-13 -418.98±1.13e-13 -418.98±1.13e-13 -418.98±1.13e-13
7 5.38e-09±1.40e-09 7.65e-15±2.28e-15 1.66e-17±2.79e-18 2.67e-15±4.1e-16 1.71e-17±2.85e-18 1.20e-18±6.47e-20
8 1.04e-08±2.74e-09 1.04e-14±2.85e-15 2.20e-17±3.0e-18 3.17e-15±6.21e-16 2.24e-17±3.15e-18 5.84e-18±7.79e-21
9 -188.34±0.74 -197.86±0.35 -199.42±0.04 -199.57±0.007 -199.4±0.049 -199.42±0.03
10 -7.1±0.13 -7.86±0.2 -8.22±3.55e-15 -8.22±3.55e-15 -8.22±3.55e-15 -8.22±3.55e-15
11 6,29e-4±6.11e-05 3.63e-08±3.9e-09 5.42e-10±6.12e-11 1.62e-08±9.9e-10 5.85e-10±5.34e-11 1.52e-11±1.41e-12
12 0.45±0.03 3.51±1.39 2.1±0.51 2.41±0.86 1.91±0.46 1.32±0.35
13 -390.91±3.57 -405.12±6.91 -428.07±7.49 -429.08±7.97 -424.70±4.84 -429.26±8.18
14 11.66±1.96 4.37±2.82 9.93e-15±3.91e-15 3.09e-12±6.27e-13 0.03±0.17 1.3e-17±3.7e-18
15 11.46±5.06 46.30±55.53 14.99±17.66 39.85±35.42 17.65±21.54 10.11±13.34
16 13.54±0.64 16.77±3.33 12.24±1.65 11.81±1.45 13.24±2.23 12.12±1.38
17 26.45±0 11.37±0.81 23.09±0.78 26.19±0.46 23.43±0.86 21.17±0.69
18 3,61e-4±2.31e-15 7.16e-08±8.04e-09 1.07e-09±1.11e-10 3.40e-08±2.15e-09 1.19e-09±1.07e-10 2.94e-11±2.70647e-12
19 -139.98±2,97e-3 -139.99±0.04 -140±0 -140±0 -140±0 -140±0
20 -180±0 -180±0 -180±0 -180±0 -180±0 -180±0
21 -319.32±1.13 -321.43±3.43 -330±0 -330±0 -329.99±0.002 -330±0
22 479.20±26.49 821.93±1813.03 478.76±37.28 508.87±43.77 466.64±30.79 467.39±30.8
23 59.3±4.12 169.07±69.19 58.33±35.87 63.48±37.08 50.87±26.72 25.25±18.69
24 -303±2.83 -357.22±3.87 -358.07±5.37 -355.99±4.87 -356.02±3.54 -354.26±3.25
25 -450±0 -450±0 -450±0 -450±0 -450±0 -450±0
26 -23.85±0.03 -24.04±0.02 -24.06±0 -24.06±0 -24.06±1.79e-05 -24.06±0
27 3.76e-07±8.17e-8 3.97e-13±1.17e-13 1.04e-15±2.19e-16 2.61e-13±5.49e-14 1.02e-15±2.19e-16 3.42e-18±6.18e-19
28 3.47±8.14e-08 3.63e-13±8.49e-14 1.02e-15±2.32e-16 2.45e-13±4.29e-14 1.05e-15±2.03e-16 3.36e-18±5.26e-19
29 16.497±1.06 37.98±18.11 15.10±8.57 12.44±8.22 11.11±7.53 5.19±5.35
30 2601.62±62.8 392.39±165.96 1475.12±139.86 1377.34±145.78 1350.36±142.61 1227.21±159.28
B/S/W 0/3/27 2/3/25 0/13/17 1/10/19 0/9/21

TABLE II
RESULTS OBTAINED FOR TEST FUNCTIONS.

The results also show that all symbiotic approaches obtained
better results than the canonical ECO approach in almost all
functions. ECOm achieved best results in 25 test functions
when compared to ECO approach. This indicates that the use
of symbiotic relationships favors the balance of exploration
and exploitation during the search process. This advantage can
also be observed when comparing ECOm approach with other

symbiotic approaches.

The good performance of ECOm can be explained by the
choice of good individuals to exchange information through
the Pareto front. The Pareto front for ECOm is proportional
to the objective being optimized: minimization. Also, as well
as in nature, mutualistic relationships benefit both populations,
and in the optimization context, contribute to a better explo-



ration of the solution space. This indicates that the model has
better ability to identify promising areas in the search space.

V. CONCLUSION

Biological phenomena can influence different aspects of
bio-inspired systems. Many of these systems are inspired
by some biological characteristics. In nature, systems are
interconnected forming biological ecosystems. In this way,
the inclusion of new features to provide greater biological
plausibility in optimization algorithms may increase their
efficiency and robustness to handle complex problems.

This work presents a computational model for information
exchange between populations inspired by symbiotic relation-
ships of organisms. With the analogy based on symbiotic
relationships, each population interacts with another resulting
in benefits or damages to them.

Also, the symbiotic model employed for information ex-
change is parameter free and uses different strategies to select
individuals. Pairs of individuals are selected using the non-
domination criteria of Pareto. Depending on the criterion of
selection, selected individuals have low or high quality solu-
tions to exchange information. Also, this strategy suppressed
the use of the parameter T -SIZE in standard ECO.

The proposed model was applied in the ecologically-
inspired algorithm adding a new biologically plausible mech-
anism. The Artificial Bee Colony Optimization was used to
compose the ecological framework. Thirty continuous test
functions with a high number of dimensions (d = 200)
were employed in the experiments. Results suggest that the
proposed model for information exchange in an ecosystemic
context favors the balance between exploration and exploita-
tion leading to better results. The results obtained in this
test set support the hypothesis that a system with more
biologically plausible features is able to increase its efficiency
and robustness when facing a high number of dimensions in
single objective unconstrained continuous benchmark func-
tions. In our experiments, the mutualistic approach achieved
best results.

There are several research directions for future develop-
ments. Some of them are to analyse the computational com-
plexity; to implement diversity maintenance strategies; use an
automatic mechanism to set the symbiotic selection; calculate
and use phenotypic and genotypic diversity informations to
adjust the system parameters; explore other symbiotic relation-
ships in the system; and apply the model in other continuous
and discrete optimization problems.

Finally, as any computational biological abstraction, the
symbiotic model for information exchange presented in this
work does not accomplish the whole complexity that occurs
in a real ecosystem but shows some potential for application
in optimization problems.
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