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Abstract—Data clustering is an important tool for statistical
data analysis and exploration, and it has been successfully applied
in many fields like image understanding, bioinformatics, big data
mining, and so on. From the past few decades, Evolutionary
Algorithms (EAs) have been introduced to deal with clustering
task, given their global search capabilities and their mechanisms
to escape from local minima points. EAs execution is driven in
an attempt to optimize a criterion function, also known as fitness
function. In this work, we evaluate the influence of the fitness
function on Group Search Optimization (GSO) meta-heuristic
when applied to data clustering. Three different fitness function
are proposed to GSO. Experiments are performed on twelve
benchmark data sets obtained from UCI Machine Learning
Repository to evaluate the performance of all alternative GSO
models in comparison to other well-known partitional clustering
methods from literature.

I. INTRODUCTION

The amount of data daily produced from the past years has
grown exponentially. Systems based on human analysis only
are unpractical in real life applications, given that the need for
precise and reliable information in a short period of time has
become mandatory. Fast and robust computational techniques
are required to extract relevant information from raw big data
sets automatically [1].

As one of the most primitive pattern recognition tasks,
data clustering, also referred as unsupervised learning, consists
in an attempt to separate a set of observations in groups
(clusters) according to their inner properties (similarities and
dissimilarities). It is expected that observations belonging in
the same cluster present a higher degree of similarity than
observations belonging in different clusters [2]. No prior
knowledge about the data patterns to be clustered is required.
Many real world applications have been developed employing
clustering techniques as the main tool for exploratory data
analysis in many fields, such as medicine, social sciences,
engineering, and so on.

Clustering methods are categorized in two main groups:
hierarchical and partitional. Hierarchical clustering methods
provide a series of nested partitions of the data set based on
an iterative process. Partitional methods provide a partition of
the data set into a prefixed number of clusters resulting from
an attempt to minimize a criterion function [3], [4].

One of the most popular clustering algorithm is the par-
titional K-Means [5]. K-Means is a two-steps method for

real-valued data that employs the Euclidean distance as a
dissimilarity measure. The final solution furnished by K-
Means is represented by the centroid vectors obtained for
each cluster. In K-Means, centroid vectors are computed as
the mean value of the data patterns currently associated to a
cluster. K-Means main drawback is related to the fact that its
convergence and final solutions depend on the initial partition
generated. Since the initial partition is obtained generally for a
random process, if the initial clusters are not good, the quality
of the final partition may be dramatically affected for a bad
starting point.

Clustering task can be seen, from an optimization per-
spective, as a NP-hard combinatorial optimization problem
[6]. Many optimization meta-heuristics have been applied in
literature to tackle clustering problem, such as Evolutionary
Algorithms (EAs) and Swarm Intelligence (SI) methods [2],
[7]. In both EAs and SIs, a set (population) of candidate
solutions for the problem at hand is kept and evolved according
to evolutionary operators, in an attempt to optimize an objec-
tive function (fitness function). Examples of EAs are Genetic
Algorithm (GA) [8] and Differential Evolution (DE) [9], [10].
Exemplas of SI methods are Ant Colony Optimization (ACO)
[11] and Particle Swarm Optimization (PSO) [12]. EAs and
SI algorithms are known for their capabilities to deal with
complex optimization scenarios, and their abilities to escape
from local minima points from the problem search space.

Since the fitness function is the only measure guiding the
search performed by the generational process employed by
EAs and SIs, it must be designed as a good representation
for the problem at hands, aggregating as much contextual
information as possible, so the final solutions furnished by the
adopted technique could be considered acceptable according
to the limitations of the intended application. If the adopted
fitness function is not adequate, the final solution obtained by
the meta-heuristic may be compromised.

In this work, we evaluate the influence of the fitness function
on the behavior of Group Search Optimization (GSO) meta-
heuristic [13] when dealing with clustering task. GSO is
employed as a partitional clustering algorithm for real-valued
data. Three fitness functions are proposed and applied to
GSO. This work is organized as follows. Section II presents
briefly GSO algorithm. Next (Section III), the proposed GSO



algorithm for partitional clustering and three alternative fitness
functions are described. Experimental results are shown in
Section IV. Section V presents the conclusions and some
tendencies for future works.

II. GROUP SEARCH OPTIMIZATION (GSO)
GSO is a Swarm Intelligence meta-heuristic inspired by

animal social searching behavior and group living theory. GSO
employs the Producer-Scrounger (PS) model as a framework
[14].

In GSO, the population G of S individuals is called group,
and each individual is called a member. In a n-dimensional
search space, the i-th member at the t-th searching iteration
has a current position ~Xt

i ∈ <n and a head angle ~αt
i ∈ <n−1.

The search direction of the i-th member, which is a vector
~Dt
i(~α

t
i) = (dti1, . . . , d

t
in) can be calculated from ~αt

i via a polar
to Cartesian coordinate transformation:

dti1 =
n−1∏
q=1

cos(αt
iq), (1)

dtij = sin(αt
i(j−1))

n−1∏
q=1

cos(αt
iq)(j = 1, . . . , n− 1),

dtin = sin(αt
i(n−1))

A group in GSO consists of three types of members:
producers, scroungers and dispersed members (or rangers)
[13].

During each GSO search iteration, a group member which
has found the best fitness value so far (most promising area) is
chosen as the producer ( ~Xp) [15], and the remaining members
are scroungers or rangers. The producer employs a scanning
strategy (producing) based on its vision field. In GSO, at the
t-th iteration the producer ~Xt

p will scan laterally by randomly
sampling three points in the scanning field: one at zero degree
(eq. (2)), one in the right hand side hypercube (eq. (3)) and
one in the left hand side hypercube (eq. (4)).

~Xz = ~Xt
p + r1lmax

~Dt
p(~α

t
p) (2)

~Xr = ~Xt
p + r1lmax

~Dt
p(~α

t
p +

~r2θmax

2
) (3)

~Xl = ~Xt
p + r1lmax

~Dt
p(~α

t
p −

~r2θmax

2
) (4)

where r1 ∈ < is a normally distributed random number
(mean 0 and standard deviation 1), ~r2 ∈ <n−1 is a uniformly
distributed random sequence in the range (0, 1), θmax ∈ <n−1

is a maximum pursuit angle and lmax ∈ < is a maximum
pursuit distance given by eq. (5):

lmax =
∥∥∥~U − ~L∥∥∥ =

√√√√ n∑
k=1

(Uk − Lk)2 (5)

where Uk and Lk denote the upper and lower bounds for the
k-ith dimension, respectively.

If the producer is able to find a better resource than its
current position, it will fly to this point; if no better point is
found, the producer will stay in its current position, then it
will turn its head to a new generated angle (eq. (6)).

~αt+1
p = ~αt

p + ~r2βmax (6)

where βmax ∈ < is the maximum turning angle.
If after a ∈ ℵ iterations the producer cannot find a better

area, it will turn its head back to zero degree (eq. (7)).

~αt+a
p = ~αt

p (7)

All scroungers will join the resource found by the producer,
performing scrounging strategy according to eq. (8).

~Xt+1
i = ~Xt

i + ~r3 ◦ ( ~Xt
p − ~Xt

i ) (8)

where ~r3 ∈ <n is a uniform random sequence in the range
(0, 1) and ◦ is the Hadamard product or the Schur product,
which calculates the entrywise product of two vectors.

The rangers will perform random walks through the problem
space (ranging) [16], according to eq. (9).

~Xt+1
i = ~Xt

i + li ~D
t
i(~α

t+1
i ) (9)

where

li = ar1lmax (10)

When a member escapes from the search space bounds, it
will turn back to its previous position inside the search space
[17]. GSO algorithm is presented in Algorithm 1.

Algorithm 1 Group Search Optimizer
t← 0
Initialize randomly position ~X

(0)
i ∈ G.

Calculate the fitness function for each member ~X
(0)
i .

while (termination conditions are not met) do
Pick the best group member ( ~Xt

p) to execute producing.
Choose a percentage from the members (but the ~Xt

p) to
perform scrounging (eq. (8)).
Ranging: The remaining members will perform ranging
through random walks (eq. (9)).
Calculate the new fitness value for each group member.
t := t+ 1

end while
Return ~Xt

p

GSO scrounging operator focuses the search performed by
the group in the most promising areas from the problem space,
while producing and ranging operators are the main mecha-
nisms employed by GSO for escaping from local minima.



III. PROPOSED APPROACH

In this section, we present a GSO-based partitional clus-
tering algorithm for real-valued data. We also apply three
different fitness functions to the proposed method, generating
GSOJ , GSOJe

and GSOJe2
variants.

Consider a partition P of a data set with N patterns
(each pattern represented by a vector ~pj ∈ <m, where
j = 1, 2, ..., N ) in C clusters. Each cluster is represented by
its centroid vector ~gc ∈ <m (where c = 1, 2, ..., C). Each
group member ~Xi = {~gi1, ..., ~giC} ∈ <n, where n = mxC,
represents C cluster centroids, one for each cluster [18].

Each member is initialized by the random choice of C
patterns from the data set as their initial cluster centers.

The three fitness function adopted in this work are the
Within-Cluster Sum of Squares (J) (eq. (11)), the Quantization
Error (Je) (eq. (12)) [19], [20] and the Weighted Quantization
Error (Je2) (eq. (13)) [21].

J(Pi) =

C∑
c=1

∑
∀~pj∈c

d(~pj , ~gic) (11)

Je(Pi) =

∑C
c=1

∑
∀~pj∈c d(~pj , ~gic)/|Nic|

C
(12)

Je2(Pi) =

C∑
c=1

[(
∑
∀~pj∈c

d(~pj , ~gic)/|Nic|)× (|Nic|/N)] (13)

where |Nic| is the number of patterns in cluster c, and

d(~pj , ~gic) =

√√√√ m∑
k=1

(pjk − gick)2 (14)

is the Euclidean distance.
GSO algorithm for partitional clustering is presented in

Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed GSO-clustering
with three alternative fitness functions using twelve well-
known real benchmark data sets from UCI Machine Learning
Repository [22]. The selected real data sets are: Diabetes,
E. Coli, Glass, Heart, Image Segmentation, Ionosphere, Iris,
Landsat Satellite (Statlog), Optical Recognition, Page Blocks
Classification, Wine and Yeast. These data sets present dif-
ferent degrees of difficulties, exploring aspects as unbalanced
classes, overlapping among classes, different number of char-
acteristics, different number of classes, and so on. All UCI
Machine Learning data sets are described in Table I.

We compare our three partitional GSO variants with five
partitional clustering methods from literature: standard K-
Means, standard Particle Swarm Optimizer (PSO) [12] using
J as its fitness function, PSO-clustering [18], PSO variant
presented in [20], which adopts Je as its fitness function,
PSO variant presented in [21], which adopts Je2 as its fitness
function. Parameters for all tested algorithms are presented

Algorithm 2 GSO for Partitional Clustering
t← 0
Initialization: For each member ~X(0)

i ∈ S, pick C patterns
randomly as the initial cluster centroids ~gic. After that,
assign each pattern ~pj to its closest cluster.
Calculate the initial fitness function for each member ~X(0)

i .
while (termination conditions are not met) do

Pick the best group member as the ~Xt
p.

Execute producing ( ~Xt
p only). For each evaluated point

( ~Xt
z, ~X

t
r and ~Xt

l ), determine its partition by assigning
each data pattern to the cluster with the nearest centroid.
Choose a percentage from the members (but the ~Xt

p) to
perform scrounging.
Ranging: The remaining members will perform ranging
through random walks.
Determine the new partitions represented by each mem-
ber ~Xt

i , by assigning each data pattern to the cluster with
the nearest centroid.
Calculate the new fitness value for each group member.
t := t+ 1

end while
Return ~Xt

p

TABLE I
BENCHMARK DATA SETS DESCRIPTION.

Data set Attributes Classes Patterns (N )
Diabetes 8 2 768
E. coli 7 8 336
Glass 9 6 214
Heart 13 2 270
Image Segmentation 18 7 2310
Ionosphere 33 2 351
Iris 4 3 150
Landsat Satellite 36 7 6435
Optical Recognition 64 10 5620
Page Blocks Classification 10 5 5473
Wine 13 3 178
Yeast 8 10 1484

Table II. GSO-based methods used a population of 18 mem-
bers, while PSO-based methods used a population of 20
particles, given that GSO producing operator executes two
more evaluations for the fitness function. For all algorithms,
the adopted number of clusters C is equal to the number of
classes in each tested data set.

For comparison purposes, three clustering measures are
employed: the quantization error (eq. (12)), the intra-cluster
distance (eq. (15)) and the inter-cluster separation (eq. (16))
[23].

Dmax( ~Xi) = max
c=1,...,C

{
∑
∀~pj∈c

d(~pj , ~gic)/|Nic|} (15)

Dmin( ~Xi) = min
∀c1,c2,c1 6=c2

{d(~gic1 , ~gic2)} (16)

All algorithms run in a MATLAB 7.6 environment. Fifty
independent tests were executed for each data set, and all



TABLE II
FIXED PARAMETERS FOR ALL ALGORITHMS.

Algorithm Parameter Value
K-Means maxKMeansIt 4000

All SI methods tmax 200
PSO-based methods S 20

c1 1.5
c2 1.5

PSO-clustering w 0.75
k0 50
J0 0.1
c1 2.0

Other PSO-based methods c2 2.0
w 0.9 to 0.4
S 18

θmax π/a2

GSO-based methods α0 π/4
βmax θmax/2

Scroungers Percentage 80%

evolutionary methods started with the same initial population
in each test, obtained by a random process, as explained in
GSO for partitional clustering algorithm (see Algorithm 2).

The evaluation criterion includes a rank system employed
through the application of Friedman test [24], [25] for all
the comparison clustering measures. The Friedman test is a
non-parametric hypothesis test that ranks all algorithms for
each data set separately. If the null-hypothesis (all ranks are
not significantly different) is rejected, Nemenyi test [26] is
adopted as the post-hoc test. According to Nemenyi test, the
performance of two algorithms are considered significantly
different if the corresponding average ranks differ by at least
the critical difference

CD = qa

√
nalg(nalg + 1)

6ndata
(17)

where ndata represents the number of data sets, nalg represents
the number of compared algorithms and qa are critical values
based on a Studentized range statistic divided by

√
2 [27].

Since we evaluated eight algorithms through twelve data sets,
using a significance value α = 0.05 for Friedman test, we have
qa = 3.031. Given that Je and Dmax values are minimization
metrics, the best methods will obtain lower ranks for the
Friedman test, while for Dmin (a maximization metric), the
best methods will keep higher average ranks for the Friedman
test.

Experimental results are presented in Table III and Table
IV. The best results for each metric in each data set are bold
faced. From the experimental results, based on an empirical
analysis, we can observe that GSOJe variant was able to obtain
better performances than other GSO variants in nine out of
twelve data sets. GSOJe

also outperformed all PSO variants
in all tests concerning Je and Dmin metrics. In relation to K-
Means, GSOJe

obtained the best results for Je and Dmin in
ten out of twelve data sets, but in relation to Dmax, K-Means
obtained better results than GSOJe in five out of twelve data
sets.

TABLE III
EXPERIMENTAL RESULTS. AVERAGE VALUES FOR EACH METRIC ±

STANDARD DEVIATION.

Data set Algorithm Je Dmax Dmin

Diabetes K-Means 1.04x104 ± 0.0 1.67x104 ± 0.0 5.0x104 ± 0.0

PSO-clust. 1.03x104 ± 422.9 1.67x104 ± 582.4 3.97x104 ± 9.1x103

PSOJ 1.04x104 ± 627.5 1.68x104 ± 788.4 4.0x104 ± 1.0x104

PSOJe
8.05x103 ± 662.3 1.58x104 ± 423.4 7.93x104 ± 5.5x104

PSOJe2
1.04x104 ± 627.5 1.68x104 ± 788.4 4.00x104 ± 1.1x104

GSOJ 1.00x104 ± 384.2 1.66x104 ± 542.0 4.04x104 ± 5.6x103

GSOJe
7.58x103 ± 13.00 1.52x104 ± 26.01 1.02x106 ± 1.6x106

GSOJe2
1.00x104 ± 378.0 1.65x104 ± 541.1 4.05x104 ± 5.5x103

E. Coli K-Means 0.050 ± 0.003 0.103 ± 0.015 0.044 ± 0.007

PSO-clust. 0.057 ± 0.006 0.123 ± 0.023 0.047 ± 0.015

PSOJ 0.057 ± 0.006 0.122 ± 0.025 0.050 ± 0.015

PSOJe
0.045 ± 0.006 0.100 ± 0.011 0.039 ± 0.018

PSOJe2
0.057 ± 0.006 0.122 ± 0.025 0.050 ± 0.015

GSOJ 0.058 ± 0.006 0.129 ± 0.034 0.041 ± 0.010

GSOJe
0.033 ± 0.005 0.100 ± 0.011 0.072 ± 0.041

GSOJe2
0.058 ± 0.006 0.129 ± 0.034 0.041 ± 0.010

Glass K-Means 3.747 ± 0.400 9.84 ± 1.23 1.95 ± 1.21

PSO-clust. 4.520 ± 1.429 11.65 ± 5.90 0.761 ± 0.673

PSOJ 4.520 ± 1.429 11.65 ± 5.90 0.761 ± 0.673

PSOJe
3.266 ± 0.298 10.50 ± 2.15 0.477 ± 0.662

PSOJe2
4.520 ± 1.429 11.65 ± 5.90 0.761 ± 0.673

GSOJ 5.279 ± 1.086 15.43 ± 4.824 1.992 ± 1.203

GSOJe
1.058 ± 0.023 6.344 ± 0.125 59.72 ± 52.68

GSOJe2
5.279 ± 1.086 15.43 ± 4.824 1.992 ± 1.203

Heart K-Means 2.16x103 ± 5.27 2.72x103 ± 2.08 6.64x103 ± 36.2

PSO-clust. 2.63x103 ± 236.7 3.24x103 ± 337.5 6.40x103 ± 3.5x103

PSOJ 2.63x103 ± 236.7 3.24x103 ± 337.5 6.40x103 ± 3.5x103

PSOJe
2.53x103 ± 165.2 3.15x103 ± 207.6 5.52x103 ± 2.4x103

PSOJe2
2.63x103 ± 236.7 3.24x103 ± 337.5 6.40x103 ± 3.5x103

GSOJ 2.25x103 ± 127.5 2.84x103 ± 149.5 6.49x103 ± 1.9x103

GSOJe
1.87x103 ± 133.3 3.54x103 ± 309.5 4.46x105 ± 1.2x106

GSOJe2
2.26x103 ± 141.5 2.85x103 ± 175.9 6.52x103 ± 2.2x103

Image K-Means 3.46x104 ± 1.2x104 2.13x105 ± 8.0x104 8.48x103 ± 1.3x103

Seg. PSO-clust. 3.06x104 ± 2.3x104 1.68x105 ± 1.6x105 3.93x103 ± 2.9x103

PSOJ 3.06x104 ± 2.3x104 1.68x105 ± 1.6x105 3.93x103 ± 2.9x103

PSOJe
9.51x103 ± 587.9 2.46x104 ± 5.6x103 2.80x103 ± 3.4x103

PSOJe2
3.06x104 ± 2.3x104 1.68x105 ± 1.6x105 3.93x103 ± 2.9x103

GSOJ 6.35x104 ± 2.0x104 3.97x105 ± 1.4x105 7.16x103 ± 3.2x103

GSOJe
3.39x103 ± 181.7 2.36x104 ± 1.6x103 7.23x104 ± 6.3x104

GSOJe2
6.35x104 ± 2.0x104 3.97x105 ± 1.4x105 7.16x103 ± 3.2x103

Ionosp. K-Means 7.103 ± 0.377 10.47 ± 0.329 320.5 ± 2.2x103

PSO-clust. 7.827 ± 0.443 11.07 ± 0.714 11.58 ± 2.395

PSOJ 7.847 ± 0.446 11.07 ± 0.723 11.78 ± 2.56

PSOJe
6.439 ± 1.182 10.93 ± 1.379 16.68 ± 10.46

PSOJe2
7.847 ± 0.446 11.07 ± 0.723 11.07 ± 0.723

GSOJ 7.617 ± 0.329 10.55 ± 0.381 7.723 ± 1.106

GSOJe
4.656 ± 0.047 9.294 ± 0.058 1.47x103 ± 4.6x103

GSOJe2
7.617 ± 0.329 10.55 ± 0.381 7.724 ± 1.106

Table V shows the average Friedman/Nemenyi ranks ob-
tained for each method in an overall evaluation. Fig. 1, Fig. 2
and Fig. 3 present all algorithms ordered by their average ranks
for each metric, from the best method in the left to the worst
method at right. The Friedman/Nemenyi test shows that GSO-
based meta-heuristics were able to obtain better results than
PSO-based methods when adopting the same fitness function,
showing GSO potential as an optimization meta-heuristic. The
overall evaluation also showed that the quantization error is a
good option as a fitness function for GSO when dealing with
clustering task.

The Friedman/Nemenyi tests also showed that there is no
significant difference between J and Je2 when adopted as



TABLE IV
EXPERIMENTAL RESULTS (CONT.).

Data set Algorithm Je Dmax Dmin

Iris K-Means 0.550 ± 0.063 0.733 ± 0.215 3.45 ± 2.59

PSO-clust. 0.741 ± 0.083 1.011 ± 0.154 3.721 ± 1.98

PSOJ 0.741 ± 0.083 1.011 ± 0.154 3.721 ± 1.98

PSOJe
0.714 ± 0.066 1.122 ± 0.240 2.770 ± 1.89

PSOJe2
0.741 ± 0.083 1.011 ± 0.154 3.721 ± 1.982

GSOJ 0.543 ± 0.019 0.702 ± 0.066 3.049 ± 0.190

GSOJe
0.557 ± 0.027 1.041 ± 0.308 4.669 ± 3.639

GSOJe2
0.543 ± 0.019 0.703 ± 0.068 3.054 ± 0.186

Landsat K-Means 2.72x103 ± 258.2 5.41x103 ± 1.3x103 4.00x103 ± 429.9

Sat. PSO-clust. 3.86x103 ± 491.9 7.55x103 ± 1.6x103 2.79x103 ± 1.4x103

PSOJ 3.94x103 ± 484.3 7.49x103 ± 1.5x103 3.10x103 ± 1.6x103

PSOJe
3.50x103 ± 257.4 6.57x103 ± 1.3x103 2.31x103 ± 1.1x103

PSOJe2
3.94x103 ± 484.3 7.49x103 ± 1.5x103 3.10x103 ± 1.6x103

GSOJ 3.90x103 ± 491.2 7.415x103 ± 1.4x103 2.24x103 ± 491.2

GSOJe
3.11x103 ± 360.2 7.05x103 ± 1.8x103 3.35x103 ± 1.4x103

GSOJe2
3.90x103 ± 491.2 7.41x103 ± 1.4x103 2.24x103 ± 998.6

Optical K-Means 652.3 ± 6.430 779.5 ± 34.12 480.1 ± 128.0

Rec. PSO-clust. 1.13x103 ± 42.36 1.40x103 ± 82.66 783.8 ± 320.9

PSOJ 1.13x103 ± 41.26 1.40x103 ± 80.1 767.2 ± 326.5

PSOJe
1.12x103 ± 30.40 1.41x103 ± 94.52 720.7 ± 257.9

PSOJe2
1.13x103 ± 41.26 1.40x103 ± 80.14 767.2 ± 326.5

GSOJ 1.11x103 ± 64.74 1.39x103 ± 98.16 792.7 ± 328.4

GSOJe
193.1 ± 63.34 1.58x103 ± 123.1 3.10x103 ± 6.0x103

GSOJe2
1.11x103 ± 64.74 1.39x103 ± 98.16 792.7 ± 328.4

Page K-Means 2.62x108 ± 0.0 1.18x109 ± 0.0 6.71x106 ± 0.0

Blocks PSO-clust. 3.54x108 ± 9.6x107 1.51x109 ± 4.7x108 2.05x106 ± 4.5x106

Class. PSOJ 3.61x108 ± 8.7x107 1.52x109 ± 4.7x108 2.49x106 ± 5.1x106

PSOJe
6.11x106 ± 1.5x105 3.06x107 ± 7.7x105 4.59x105 ± 1.2x106

PSOJe2
3.61x108 ± 8.7x107 1.52x109 ± 4.7x108 2.49x106 ± 5.1x106

GSOJ 3.17x108 ± 7.4x107 1.34x109 ± 1.9x108 3.89x107 ± 1.1x108

GSOJe
5.77x106 ± 4.7x104 2.89x107 ± 2.3x105 3.8x1010 ± 2.5x1011

GSOJe2
3.17x108 ± 7.4x107 1.34x109 ± 1.9x108 3.89x107 ± 1.1x108

Wine K-Means 1.50x104 ± 442.6 2.76x104 ± 3.3x103 8.31x104 ± 2.5x104

PSO-clust. 1.83x104 ± 2.5x103 3.08x104 ± 7.5x103 7.30x104 ± 4.4x104

PSOJ 1.83x104 ± 2.5x103 3.08x104 ± 7.5x103 7.30x104 ± 4.4x104

PSOJe
1.81x104 ± 2.1x103 3.02x104 ± 9.0x103 7.19x104 ± 4.0x104

PSOJe2
1.83x104 ± 2.5x103 3.08x104 ± 7.5x103 7.30x104 ± 4.4x104

GSOJ 1.50x104 ± 237.9 2.89x104 ± 1.2x103 7.44x104 ± 9.0x103

GSOJe
1.52x104 ± 847.9 2.75x104 ± 4.4x103 9.78x104 ± 7.0x104

GSOJe2
1.50x104 ± 223.7 2.89x104 ± 1.2x103 7.45x108 ± 8.9x103

Yeast K-Means 0.038 ± 0.002 0.065 ± 0.015 0.028 ± 0.003

PSO-clust. 0.058 ± 0.009 0.124 ± 0.038 0.023 ± 0.012

PSOJ 0.061 ± 0.012 0.133 ± 0.050 0.023 ± 0.011

PSOJe
0.048 ± 0.002 0.076 ± 0.009 0.014 ± 0.007

PSOJe2
0.061 ± 0.012 0.133 ± 0.050 0.023 ± 0.011

GSOJ 0.049 ± 0.006 0.122 ± 0.040 0.023 ± 0.007

GSOJe
0.026 ± 0.005 0.069 ± 0.012 0.029 ± 0.018

GSOJe2
0.049 ± 0.006 0.122 ± 0.040 0.023 ± 0.007

fitness functions and applied to both PSO and GSO, for the
evaluated data sets. GSOJe obtained the larger inter-cluster
separation and the second best more compact clusters from
all tested algorithms.

V. CONCLUSION

In this work, a GSO partitional clustering method for real-
valued data was presented. We also evaluated the influence of
three alternative fitness functions (the Within-Cluster Sum of
Squares, the Quantization Error and the Weighted Quantization
Error) on the behavior of GSO, generating GSOJ , GSOJe

and
GSOJe2

variants.
Experiments were performed on twelve real-valued clas-

sification data sets obtained from UCI Machine Learning

TABLE V
FRIEDMAN/NEMENYI AVERAGE RANKS FOR EACH METRIC.

Algorithm Je Dmax Dmin

K-Means 124.97 126.20 228.16
PSO-clustering 268.32 239.26 176.98
PSOJ 273.28 240.61 181.24
PSOJe 170.23 171.87 145.14
PSOJe2 273.28 240.61 181.24
GSOJ 221.28 221.26 190.19
GSOJe 50.98 143.14 309.20
GSOJe2

221.65 221.05 191.87

Fig. 1. Friedman test in relation to Je (from the best method, in the left, to
the worst, at right).

Fig. 2. Friedman test in relation to Dmax.



Fig. 3. Friedman test in relation to Dmin.

Repository. GSO variants were compared to K-Means, PSO-
clustering, and PSOJ , PSOJe and PSOJe2 . Experimental re-
sults showed that GSO variants were able to outperform their
corresponding PSO variants. Also, GSOJe

was able to obtain
the best average results in relation to Quantization Error and
Inter-Cluster Separation.

An overall evaluation was obtained by the application of
Friedman/Nemenyi tests. The overall evaluation showed the
potential of GSOJe in relation to other GSO variants and
all PSO variants studied. GSOJe was able to obtain the best
separation among clusters and the second best degree of
compactness for the final clusters.

As future works, we intend to evaluate the influence of
hybrid fitness function on the behavior of GSO as a manner
to improve the degree of compactness of the final clusters. We
also intend to extend our partitional GSO clustering method
to the context of automatic clustering [28], so the algorithm
would be able to determine the best number of clusters
automatically (as part of its generational process).
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