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Abstract—Transcription is the process of making an RNA copy
of a gene sequence. Next, this copy (mRNA) is then translated
into proteins. Proteins dictates the expected behavior inside the
cells and are required for the structure, function, and regulation
of the body’s tissues and organs. Together, transcription and
translation are known as gene expression. Transcriptograms are
basically defined as “images” of gene expression data of genomes,
by generating expression profiles for transcriptomes. They allow
to assess cell metabolism, being capable of discriminating the
stage the cell is going through at a given instant, as well as
pointing metabolic changes in altered cellular states as compared
to a control state, independently of the transcriptome profilling
protocol. Though, they cannot highlight differential expression
profiles. We present a new possibility of RNA-Seq data analysis
using Transcriptograms for discovering module-based differential
expression profiles. We demonstrate its practical application
while obtaining more specific gene signatures as well as functional
annotations, closely related to biomedical context. Moreover,
these signatures are also enriched by survival cancer analysis.

I. INTRODUCTION

In multicellular organisms, nearly every cell contains the
same genome and thus the same genes. However, not every
gene is transcriptionally active in every cell. These variations
underlie the wide range of physical, biochemical, and devel-
opmental differences seen among various cells and tissues
and may play a role in the difference between health and
disease. Thus, by studying transcriptomes, researchers hope
to determine when and where genes are turned on or off in
various types of cells and tissues.

When the genome-wide transcriptional profile of hetero-
geneous samples is measured under different physiological
states, any observed differences are strongly confounded by
differences in cell type compositions between samples. Recent
studies suggest that the microenvironment of a tissue may
change under different physiological states and can contribute
to the etiology of diverse diseases [1], [2], [3].

Unsupervised mixture models have been developed to ex-
plore gene expression profiles. However, they require prior
knowledge of either the cell type frequencies within a given
tissue, or the in vitro gene expression profiles of each com-
ponent cell type. In reality, this information can be difficult
to obtain and presents a major drawback for these kinds of
approaches [4].

Analysis of trancriptomes often cluster together genes by
their co-expression, or co-variation in time, which implies that
these cluster definitions depend on the stage the cell is going
through or on the protocol used to produce the assessed sam-
ple. Transcriptograms are basically defined as gene expression
profiles, generating expression data for transcriptomes. The
idea of the method is to consider averages of expression data
over neighboring genes disposed on a line. In one hand, this
procedure targets a global assessment of expression data of
whole genomes. On the other hand, it requires the definition
of gene neighborhood when disposed on a line, which is not
straightforward.

In [5] it was introduced a method for sorting a list of genes
using the computational physics method known as Monte
Carlo, called Cost Function Method (CFM). The genome
ordering of CFM defines a mathematical metric that correlates
the distance between two genes on the list with their mutual
influence.

The traditional method of transcriptogram analysis is to
explore gene expression profiles based on a seriated protein-
protein interaction network. It can not detect differential
genome-wide signatures between group of samples. In order
to complement and expand the analytical possibilities of the
transcriptogram, it is presented a new module-based strategy
to evaluate differential genome-wide expression profiles.

II. MATERIAL AND METHODS

A. RNA-Seq Data

A RNA-Seq data corresponding to a real experimental study
[6] was selected to explore differential gene expression pro-
files, which is accessible on-line in Gene Expression Omnibus
(GEO) database through the GEO Series accession number
(GSE48173). The data has 72 samples Illumina HiSeq 2000
(Homo sapiens), classified as follows: 43 Acute Myeloid
Leukemia (AML), 12 Acute Lymphoblastic Leukemia (ALL)
and 17 (Healthy).

B. Transcriptograms

The Transcriptograms take into account the notion that a
pair of genes must correlate with the probability that their
protein products are associated as well. In protein-protein
interaction (PPI) network maps, nodes represent proteins and



Fig. 1. Pipeline for Transcriptograms data analysis. (a) The graph that represents the PPI network is transformed into an adjacency matrix. (b) The adjacency
matrix is optimally adjusted by a seriation algorithm (CFM or Claritate). (c) The seriation is extracted from the adjacency matrix. (d) The window modularity
is calculated based on network seriation and its modules are evidenced by the peaks. (e) The expression data (RNA-Seq or Microarray) are adjusted along
the window modularity, resulting in the Transcriptogram. (f) A module-based analysis for evaluating differential genome-wide expression profiles.

edges represent a physical interaction between two proteins.
The edges are non directed, as it cannot be said which protein
binds the other, that is, which partner functionally influences
the other [7]. As the interactions, in which a given protein
participates, are likely to correlate with the protein’s functional
properties, protein interaction maps are frequently utilized to
uncover in a systematic fashion the potential biological role
of proteins of unknown functional classification [2], [8], [9],
[3].

Once having the protein-protein interaction network of a
genome, the next step is to devise a seriation scheme in
such way that this sort (of protein-protein network modules)
correlates to functional gene expression profiles. Modules are
present in the form of black dots agglomerations around the
adjacency matrix diagonal, as can be seen for example in
Figure 2. This visual analysis is good but not enough to
identify interactive modules. The modules identification uses
the measure called window modularity [10].

Thus, the Transcriptogram is, essentially, a 1-dimensional
projection of the expression profiles over the seriated PPI
network. An overall scheme of the pipeline to use Transcrip-
tograms for RNA-Seq Data Analysis is depicted in (Figure 1).
In this work we present a new possibility of RNA-Seq data
analysis using Transcriptograms for discovering module-based
differential expression profiles. We demonstrate how the pro-
posed approach yields insights into functional annotations over
a cancer-related RNA-Seq data, which can not be detected by
single-gene analysis (ranked gene lists)

C. Seriation over a high-quality human binary PPI

Transcriptograms have been devised solely based on se-
riation over PPI obtained from the STRING database [11].
Though, it can map to a more large catalog of genes, it does not
imply in having curated information. Therefore, in this partic-
ular study we make use of the human PPI network introduced
in [12], named HI-II-14, corresponding to a systematic map of
14,000 high-quality human binary PPI. The map also uncovers

significant inter-connectivity between known and candidate
cancer gene products, providing unbiased evidence for an
expanded functional cancer landscape.

In this work we also introduce the method Claritate to build
Transcriptograms, being a promising alternative to CFM. The
Claritate uses a strategy of spatial proportion of the actual dis-
tances between the proteins in the ordered list in relation to the
virtual minimum distance observed in the graph representative
of the PPI network. The first step relies on building an ordinary
matrix having all the minimum distances among all protein-
protein interactions. This matrix is calculated through the
utilization of the Floyd-Warshall algorithm over the associated
adjacency matrix [13]. A metaheuristic process of protein
selection takes place to calculate the proportional distances.
Thus, the distances between the proteins in the ordered list
are adjusted and subjected to a metric of acceptance, called
dispersion, which guides the movement of relationships (black
dots of the adjacency matrix) for the main diagonal, forming
the protein modules. A similar strategy has been used in [14]
to measure the quality of clustering solutions. Claritate also
make uses of the scale-free property of biological networks [2],
focusing on a pre-selection of potential hubs and sorting them
according to its excentricity [15], resulting into the first seri-
ation. Figure 2 shows the Saccharomyces PPI network, used
in Rybarczyk-Filho et al. (2011) along with its corresponding
seriation results (CFM and Claritate). It can be observed,
clearly, a significant improvement of Claritate in the detection
of network modules (black bloxes along the diagonal).

D. Calculation of Differentially Expressed Genes (DEG)

DEG were calculated along with the R package GeneS-
elector [16]. Ranked gene lists were enumerated using the
function RankingWelchT(), which provide gene rankings based
on Welch t statistic.



Fig. 2. Saccharomyces cerevisiae PPI network. Comparison of window modularity and PPI adjacency matrix seriated by the CFM and the Claritate. The
window modularity is a representation of the matrix for identification of modules through the peaks and valleys.

E. Functional enrichment analysis

Ranked gene lists are usually evaluated over biological
databases such as Gene Ontology to verify whether the gene
list is enriched (covered) by terms enregistred in the annotation
database. For example, given a list of genes being up-regulated
under certain conditions, an enrichment analysis will search
for GO terms that are over-represented (or under-represented)
using annotations for that gene set. In this work we have
used the AmiGO/Term Enrichment Service [17] of the Gene
Ontology Consortium (GO) [18].

F. RNA-Seq Data Analysis using Transcriptograms

We have developed a pipeline for RNA-Seq data analysis
using Transcriptograms that can be run directly from terminal
code line, using a set of shell scripts (associated to data
analysis steps). The pipeline covers all steps (Figure 1),
including other facilities for exploration and visualization
of Transcriptograms. The pipeline has been implemented in
JAVA, R and C++ programming languages, being available on
https://github.com/joseflaviojr/transcriptograma/wiki.

III. RESULTS AND DISCUSSION

The differential gene expression profiles for two groups of
camparison were carefully evaluated using Welch’s unequal
variances t-test. The first (i) group is related to ALL patients
versus Healthy ones, and the second (ii) group is related to
AML patients versus Healthy ones. Next, we make use of the
HI-II-14 seriated network to highlight patterns of differential
gene expression between patients in both groups. Thus, gene
expression variance is arranged following the optimal order
calculated by the seriation procedure. We can observe co-
expressed patterns which is closer related to the notion of

complex regulatory gene networks. Moreover, these patterns
correlates to functional modules from the seriated protein-
protein interaction. Module-based differential expression pro-
files are identified automatically by closer inspection of peaks
and valleys of gene variance, where the lowest gene expression
variances are used as modules’ frontiers (Figure 3). Without
loss of generality, the remaining discussions is focused on the
second group (AML vs Healthy).

In classical differential expression analysis the main goal is
the selection of a ranked list of genes that might be potential
markers to differentiate the control group from the target one.
Next, functional enrichment analysis takes place to find biolog-
ical soundness of the discovered gene signatures. Rather than
focus on high ranked genes that might be poorly annotated,
the proposed approach takes into account all genes in the
experiment, not only that ones resulting from an arbitrary
threshold. Although, one can easily select ranked genes either
i) locally, by searching highest ranked genes intra-modules; or
ii) globally, by searching highest ranked genes inter-modules.
The availability of so many different gene ranking methods
and the lack of consensus in the community, with respect
to the limitations and capabilities of all of them, opens a
clear space for systematic studies to better evaluate the current
methods with relevant and objective criteria [16]. Nonetheless,
the choice of an unique ranking method is not recommended,
and thus module-based gene rankings could be a potential
alternative for the “choosing gene lists dilemma”.

As an example, if we search for functional annotation
using a gene list solely based on the top-100 DEG (AML
vs Healthy), so a single-gene analysis, only eight biological
functions are retrieved from Gene Ontology database:

https://github.com/joseflaviojr/transcriptograma/wiki


Fig. 3. Module-based differential expression profiles estimated from the Claritate seriation of the human network PPI (HI-II-14) over two groups of patients:
i) ALL vs Healthy and ii) AML vs Healthy. The y-axis corresponds to the differentiation level of each gene between Healthy and Unhealthy samples.

• BP GO:0045930 - negative regulation of mitotic cell
cycle (p-value = 6.02× 10−4)

• BP GO:0000075 - cell cycle checkpoint (6.02× 10−4)
• BP GO:2000785 - regulation of autophagosome assembly

(6.75× 10−4)
• BP GO:0044088 - regulation of vacuole organization

(8.75× 10−4)
• BP GO:2000786 - positive regulation of autophagosome

assembly (8.75× 10−4)
• MF GO:0005515 - protein binding (2.44× 10−11)
• MF GO:0005488 - binding (1.00× 10−5)
• MF GO:0016308 - 1-phosphatidylinositol-4-phosphate 5-

kinase activity (9.22× 10−4)

Conversely, if we search for functional annotations using
a gene list based on the top-100 DEG (AML vs Healthy),
resulting from the top-4 modules (4 x 25 genes) showing
higher differentiation, then seventeen biological functions are
retrieved. Thus, two-fold more than the single-gene analysis:

• BP GO:0001776 - leukocyte homeostasis (p-value =
7.51× 10−4)

• BP GO:0035821 - modification of morphology or physi-
ology of other organism (7.78× 10−4)

• BP GO:0002513 - tolerance induction to self antigen
(7.78× 10−4)

• BP GO:0002260 - lymphocyte homeostasis (8.18 ×
10−4)

• BP GO:0032945 - negative regulation of mononuclear
cell proliferation (8.18× 10−4)

• BP GO:0050672 - negative regulation of lymphocyte
proliferation (8.18× 10−4)

• BP GO:0001782 - B cell homeostasis (8.18× 10−4)
• BP GO:0070664 - negative regulation of leukocyte pro-

liferation (8.18× 10−4)
• BP GO:0051817 - modification of morphology or physi-

ology of other organism involved in symbiotic interaction
(8.18× 10−4)

• BP GO:0018107 - peptidyl-threonine phosphorylation

(8.18× 10−4)
• BP GO:0050869 - negative regulation of B cell activation

(8.18× 10−4)
• BP GO:1901841 - regulation of high voltage-gated cal-

cium channel activity (8.18× 10−4)
• BP GO:0010799 - regulation of peptidyl-threonine phos-

phorylation (8.18× 10−4)
• BP GO:0018210 - peptidyl-threonine modification

(8.18× 10−4)
• BP GO:0007435 - salivary gland morphogenesis (8.27×

10−4)
• MF GO:0005515 - protein binding (1.09× 10−16)
• MF GO:0005488 - binding (8.00× 10−7)

In fact, the proposed strategy was able to highlight an-
notations (in bold) tightly related to the experimental study,
being more sensitive to the biomedical context than the clas-
sical single-gene methods. Moreover, the seriation enriches
the DEG result through an integrated procedure, exploring
correlation between functional affinity (PPI network) and co-
expression patterns (transcriptome).

We can say that the example above employs module-based
DEG search locally. However, as metioned previously, it is
also possible to enumerate a DEG list globally. A total of
1055 GO terms (BP: 737, CC: 210 and MF: 108) were
retrieved by taking into account the same comparison group
(AML vs Healthy). Next, we present the top-15 annotations
(BP) in accordance to the highest module-based DEG profiles.
Note that they are more general annotations which is indeed
explained by the inclusion of lowest differentially expressed
modules. Though, there is one annotation (in bold) that is
closely related to the biomedical context.

• GO:0035556 - intracellular signal transduction
• GO:0007049 - cell cycle
• GO:0002376 - immune system process
• GO:0000209 - protein polyubiquitination
• GO:1901685 - glutathione derivative metabolic process
• GO:0016070 - RNA metabolic process



Fig. 4. Transcriptograms of the differential expression profiles estimated from the Claritate seriation of the human network PPI (HI-II-14) over two groups
(patients) of comparison: i) ALL vs Healthy (black) and ii) AML vs Healthy (red). The background image (gray) is the window modularity. There is an
example of module on demand, a highlighted gene group for meta-analisys comparison.

• GO:0010467 - gene expression
• GO:0015031 - protein transport
• GO:0044260 - cellular macromolecule metabolic process
• GO:0044403 - symbiosis, encompassing mutualism

through parasitism
• GO:0090174 - organelle membrane fusion
• GO:0008380 - RNA splicing
• GO:0060370 - susceptibility to T cell mediated cyto-

toxicity
• GO:0051534 - negative regulation of NFAT protein im-

port into nucleus
• GO:0030422 - production of siRNA involved in RNA

interference

In [19], a new method for Gene Set Enrichment Analysis
(GSEA) were introduced. The GSEA method relies on the
idea of exploring groups of genes by the notiong of gene sets.
Gene sets are defined based on prior biological knowledge,
such as, published information about signaling pathways or
co-expression in previous experiments. The main goal is to
determine whether members of a gene set S tend to occur
toward the top (or bottom) of the gene list L, in which case
the ranked gene list is correlated with the phenotypic class
distiction, for instance (AML vs Healthy). GSEA does not
explore functional association between proteins, for instance
PPI networks. Taking again the same comparison group, a total
of 225 GO terms were retrieve. We present bellow the most
enriched 15 BP terms. As it can be observed, GSEA is less
sensitive to the biomedical context than the proposed strategy.

• GO:0006508 - proteolysis
• GO:0007088 - regulation of mitotic nuclear division
• GO:0032940 - secretion by cell
• GO:0007610 - behavior
• GO:0044257 - cellular protein catabolic process
• GO:0006512 - obsolete ubiquitin cycle
• GO:0030163 - protein catabolic process
• GO:0051248 - negative regulation of protein metabolic

process
• GO:0009628 - response to abiotic stimulus
• GO:0045045 - obsolete secretory pathway
• GO:0007626 - locomotory behavior
• GO:0043285 - biopolymer catabolic process
• GO:0045184 - establishment of protein localization
• GO:0009967 - positive regulation of signal transduction
• GO:0051641 - cellular localization

In Figure 4 it can be observed all module-based differential
expression profiles for both comparison groups. Note that these
experiments are of different phenotypic classes, and thus hav-
ing distinct modules (size and variance). In order to make these
experiments comparable, we must calculate its corresponding
Transcriptograms. Note, there are some group of genes that
are required together in both differention scenarios, but a more
strong signal is highlighted on the AML patients (red curve).
One my also be interested in the evaluation of module-based
meta analysis of differential gene expression signatures by the
inspection of “modules on demand” (Figure 4, dot-rectangle).

Finally, a cancer survival analysis using the top-100 DEG



(AML vs Healthy), resulting from the top-4 module-based
differential expression profiles (4 x 25 genes), were evaluated
though the PPISURV tool (http://bioprofiling.de). Interest-
ingly, 37 genes were identified as positive to survival in diffuse
large B cell lymphoma data set (GSE10846). As an example,
the UBE2R2 gene is directly associated to UBE21 gene by PPI
together with DTX3L gene (http://biograph.be/concept/graph/
C1150669/C1421283). The UBE21 is one the selected candi-
date endogenous control genes in normal hematopoietic cells
on Leucégène RNA-seq data [6]. The causes of diffuse large B-
cell lymphoma are not well understood. Usually it arises from
normal B cells, but it can also represent a malignant trans-
formation of other types of lymphoma or leukemia. There are
also other positive and negative feedbacks of survival retrieved
by PPISURV for other types of cancer (Breast: 15 genes and
Lung: 21 genes). Genes associated with similar disorders show
both higher likelihood of physical interactions between their
products and higher expression profiling similarity for their
transcripts, supporting the existence of distinct disease-specific
functional modules [3].

All data and the sequence of commands of this analysis are
available on https://github.com/joseflaviojr/transcriptograma/
tree/master/UseCase-Leukemia.

IV. CONCLUSION

In classical transcriptome data analysis genes are clustered
either by their co-expression, or co-variation in time, assuming
that these cluster definitions are closed linked to the stage
the cell is going through or on the protocol used to assessed
sample(s). Transcriptograms are independent of the profilling
protocol and, this is due to the fact that seriation identifies
network modules directly over the PPI to further explore
gene expression profiles. Module-based differential expression
profiles using Transcriptograms is a promising strategy, ob-
taining more specific gene signatures as well as functional
annotations closely related to biomedical context. Moreover,
cancer survival analysis over the discovered signatures are
enriched to a positive class of genes.
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