
Finding Inference Rules using Graph Mining in
Ontological Knowledge Bases

Lucas Fonseca Navarro∗, Estevam R. Hruschka Jr.∗ and Ana Paula Appel†
∗Federal University of Sao Carlos

Rodovia Washington Lus, Km 235 - SP 310, Sao Carlos - SP, CEP 13565-905 Tel.: +55 16 3351-8111
E-mails: navarro.lucasf@gmail.com, estevam@dc.ufscar.br

†IBM Research Brazil
Rua Tutoia, 1157 - TUT05, Sao Paulo, SP, Brazil - CEP 04007-900 - E-mail: apappel@br.ibm.com

Abstract—The exponentially grow of Web and data availability,
the semantic web area has expanded and each day more data
is expressed as knowledge bases. Knowledge bases (KB) used in
most projects are represented in an ontology-based fashion, so the
data can be better organized and easily accessible. It is common to
map these KBs into a graph when trying to induce inference rules
from the KB, thus it is possible to apply graph-mining techniques
to extract implicit knowledge. One common graph-based task is
link prediction, which can be used to predict edges (new facts
for the KB) that will appear in a near future. In this paper, we
present Graph Rule Learner (GRL), a method designed to extract
inference rules from ontological knowledge bases mapped to
graphs. GRL is based on graph-mining techniques, and explores
the combination of link prediction metrics. Empirical analysis
reveled GRL can successfully be applied to NELL(Never-Ending
Language Learner)1 helping the system to infer new KB beliefs
from existing beliefs (a crucial task for a never-ending learning
system).

I. INTRODUCTION

In the last years a number of different research projects
focused on building large scale ontological knowledge bases
(also called ontologies), such as Knowledge Vault [1], Free-
base [2], YAGO [3] and a continuously learning program
called NELL (Never Ending Language Learner) [4]. Tra-
ditionally, an ontological knowledge base (OKB) organizes
and stores knowledge in two different parts, namely: i) an
ontological model, where categories (city, company, person,
etc.) and relations (worksFor(person, company), headQuar-
teredIn(company, city))) are defined, and ii) a set of facts
which are instances of categories (city (New York), com-
pany(Disney), person(Walt Disney)) and instances of relations
(headQuarteredIn(Disney, Orlando))

NELL is the main motivation of this work, mainly because
of its never-ending learning characteristics. To build its con-
tinuously growing knowledge base, NELL reads the web 24
hours a day, 7 days a week with two specific goals: i) extend its
own knowledge base and, ii) improve its own learning abilities.
To allow NELL performing these tasks, different components,
based on different approaches are coupled together follow-
ing the Never-Ending Learning Principles[4] (most of these
approaches are listed in NELL’s website2). NELL’s different

1http://rtw.ml.cmu.edu
2http://rtw.ml.cmu.edu/rtw/publications

components work together extracting information and learning
from the web, as well as from NELL’s own knowledge base.

Even in a never-ending learning approach, the question of
how to develop methodologies to help populating ontological
KBs and improving their coverage is still a challenge [5].
Thus, the use of a rule-based inference approach (here called
Rule Learner - RL) can have relevant impact in the KB
population task. In general, the goal of a RL is to induce
inference rules from structured or unstructured data[6]. As an
example, consider two facts (represented in a KB): the athlete
Neymar Jr. plays in sports team Barcelona and the same
athlete Neymar Jr. plays on sports league Champions League.
From both facts, we can infer the implicit statement (new
fact): the sports team Barcelona plays in the sports league
Champions League. Such new fact tends to be easily inferred
by humans, but not by a machine (without specific inference
capabilities). Therefore, a RL can help finding patterns and
creating inference rules like: if an athlete Y plays for a sports
team X and athlete Y plays in sports league Z, then sports
team X plays in sports league Z.

According to [6], there are two problems with most of
the existing inference rule learners: they do not scale when
based on large corpora and they tend to assume that the
training data is largely accurate and complete. However, to
be coupled to a never-ending learning system, such as NELL,
a RL must overcome both issues. It happens mainly because
NELL’s KB is continuously growing and continuously being
updated and revised by NELL’s components. In this paper,
we present Graph Rule Learner (GRL), a method designed
to allow inference rules induction (or extraction) from on-
tological knowledge bases (represented as graphs). GRL is
based on graph-mining techniques, and explores different
link prediction metrics to approach what is called extra-
neighbor assessment[7]. Empirical results show that GRL can
be integrated with NELL as a new component, thus, it can
use NELL’s KB to find inference rules and help populating
NELL’s KB. Also, GRL can be used as a generic inference
rule induction component to be coupled to other KBs.

GRL assumes that the training data is mostly (but not
completely) accurate and complete. However, it is not a
problem if the KB is either imperfect, or incomplete. Actually,
link prediction algorithms assume that the missing links are

due to the KB evolution in the near future, thus it is currently
incomplete. To take advantage of more accurate knowledge,
GRL limits its learning process to a specific part of NELL’s
KB called the set of beliefs, that is composed just by high
confidence facts. Regarding scalability, GRL scales with large
graphs (the same as large KB’s), using a graph disk structure
called GraphDB-Tree [8].

The main contributions of this paper are: i) proposing a
link-prediction-based method to extract inference rules from a
continuously growing ontological KB; ii) empirically showing
that link-prediction metrics adapts well to the problem of in-
ference rules extraction even when the input KB is incomplete
and somehow noisy (having wrong facts stored).

II. RELATED WORKS

Rule induction from data is not a novel task and many differ-
ent approaches have been proposed. Due to space constraints,
in this section we focus on more recent approaches and which
are closely related to GRL. The Online Rule Learner (ORL)
[6] mines inference rules from explicit information extracted
from large corporas using automated information extraction
(IE) systems [9], [10]. ORL is similar to GRL in the sense
that it maps input corpora into a graph-based representation.
Differently from GRL, however, ORL uses the topology of
the created graph to extract rules, instead of link prediction
techniques used in GRL.

The Universal Schema proposed in [11] focuses on the
benefits of using latent features for increasing coverage of
KBs. Key differences between that approach and the one
proposed in the work described in our paper include our use
of graph-based link prediction measurements as opposed to
surface-level patterns in theirs, and also the ability of the pro-
posed GRL method to generate useful (and comprehensible)
inference rules which is beyond the capability of the matrix
factorization approach.

A traditional approach to extract inference rules is the
inductive logic programming (ILP), which deduces rules from
ground facts. According to [12], current ILP systems cannot
be applied to KBs who gathers data from web with a large
scope of categories (anything in the world), such as NELL,
mainly because they usually require negative statements as
counter-examples, and these projects just hold instances that
they consider correct or have some confidence3. Also, the ILP-
based approach don’t scale to the huge amount of data that
these kind of KBs store.

Regarding NELL’s, when considering its KB as input to
induce inference rules, there are other previously proposed
approaches. In [13] a Markov Logic approach is used to allow
inference over subsets of categories and relations. PRA [5] is
the graph-based approaches. PRA (Path Ranking Algorithm)
uses a combination of constrained, weighted, random walks
through NELL’s KB graph to reliably infer new beliefs for it’s
KB. PRA performs such inference by automatically learning
semantic inference rules over the KB.

3Ontology properties such as mutual exclusion can be used to solve part
of this problem as done in [3]

III. DEFINITIONS

Let G = (V,E) be an undirected graph with a set of
nodes V and a set of edges E. In addition, n represents the
number of nodes and m represents the number of edges in G.
ℵ(u, v)|u, v ∈ V represents the number of common neighbors
between u and v, and is defined as the set of nodes in V that
are simultaneously adjacent to u and v and Γ(u) denote the
set of neighbors of u in G. (ℵ(u, v) = |Γ(u) ∪ Γ(w)|).

An ontological knowledge base (OKB) can be mapped into
a graph, called an ontological graph G = (V,E,X), where
each x ∈ X is a pair composed by a node v ∈ V and a
category c from the set of categories of the OKB, so X has
the list of categories for each node. And each edge in E is
rotuled with a name (e.g athletePlaysSport).

A closed triangle ∆(u, v, w) of a graph G = (V,E) is a
set of three completely connected nodes where u, v, w ∈ V
and ∆(u, v, w) = {< u, v >,< v,w >,< w, u >} ∈ E. An
open triangle Λ(u,w) of a graph G = (V,E) is formed by
three connected nodes where Λ(u,w) = {(u, v), (v, w)} ∈
E ∧ {u,w} /∈ E. In an ontological graph, ∆c(c1, c2, c3)
represents all the closed triangles composed by node’s of
categories c1, c2 and c3 and Λc(c1, c2) represents all the open
triangles composed by node’s categories of c1 and c2 (in this
case, the middle nodes categories don’t matter). Any ∆c is
called a closed triangles category group and any Λc is called
a open triangles category group.

The extra neighbors[7] value between two categories
ℵc(c1, c2), indicates how related these two categories of nodes
are. This value is calculated using:

ℵc(c1, c2) =
∑

∀Λ(u,v)∈Λc(c1,c2)

(ℵ(u, v)− 1)

It can be associated as a measure between two categories of
nodes (scoreEN(c1, c2)) instead of a measure between two
nodes, as in most of Link Prediction metrics.

A commonly used similarity measure to calculate
score functions in LP tasks is the Jaccard coefficient:
scoreJac(u;w) := |Γ(u)∩Γ(w)|

|Γ(u)∪Γ(w)| . [14], it measures the probabil-
ity that both u and w having a feature f (for a randomly se-
lected feature f that either u or w has). Another traditional LP
metric is the Salton index[15], commonly known as the cosine
similarity. Formally, the Salton index is: scoreSal(u;w) :=
|Γ(u)∩Γ(w)|
|Γ(u)|×|Γ(w)| . Both Salton and Jaccard indexes are used in
experiments with GRL (see in Section V).

An Inference Rule (or just rule) is a logical form, consisting
of a conclusion r, and premises p1, p2, ..., pn. One possible
representations is r ⇐= p1 ∧ p2 ∧ ... ∧ pn. The premises and
the conclusion are literals that can be predicates (p), a logical
function p(x1, x2, ..., xn) that can only return true or false.

IV. THE GRAPH RULE LEARNER

The Graph Rule Learner (GRL) is an algorithm designed
to extract inference rules from ontological knowledge bases.
GRL uses a link-prediction metric called extra-neighbors[7] to
rank possible rules, and also to determine the antecedents and
consequents of each induced rule.

Fig. 1. GRL running example

A. GRL Algorithm

GRL needs an ontological graph as input, and its output is
a list of induced inference rules.

Algorithm 1 The GRL
Require: G = (V,E,X)
Ensure: List of Inference Rules

1: Find all ∆(u, v, w) in G
2: for all closed triangle ∆(u, v, w) do
3: Calculate ℵ(u, v), ℵ(v, w) and ℵ(w, u)
4: Group ∆(u, v, w) in ∆c(cu, cv , cw)
5: Group Λ(u, v) in Λc(cu, cv), Λ(v, w) in Λc(cv , cw) and Λ(w, u)

in Λc(cw, cu)
6: end for
7: for all Λc(ci, cj) do
8: Calculate ℵc(ci, cj)
9: end for

10: for all ∆c(cu, cv , cw) do
11: Find the category pair with highest ℵc:

(ci, cj) = MAX(ℵc(cu, cv),ℵc(cv , cw),ℵc(cw, cu))
12: if ℵc(ci, cj) ≥ ξ then
13: Validate the rule: rcicj (ci, cj)⇐= rcick (ci, ck)∧rckcj (ck, cj)
14: end if
15: end for

In line 1, GRL finds and lists all closed triangles ∆(u, v, w)
present in graph G. Then, for each triangle, the number
of neighbors ℵ between each pair of nodes is calculated
(e.g ℵ(u, v)), and grouped in the respective open triangle
category group Λc

4 (e.g Λ(cu, cv)). The closed triangle is also
grouped in the closed triangle category group ∆c(cu, cv, cw).
In line 8, for each open triangle category group Λc(ci, cj),
the number of extra neighbors ℵc is calculated. ℵc is the
sum of the ℵ − 1 of all instances Λ(i, j) in the group. If
ℵc(ci, cj) = 0 it indicates that all pair of nodes Λ(i, j) in
the group have only one neighbor in common. In line 11, for
each closed triangle category group ∆c(cu, cv, cw), the pair
of categories with the highest extra neighbors value ℵc will
be selected (e.g (cu, cv)). Then, if the extra neighbor value of
this pair is greater or equal than a given threshold ξ, the rule

4Despite the three nodes are connected, GRL considers that the edge
between the pair of parameters of Λ does not exist in each group

rcucv (cu, cv) ⇐= rcucw(cu, cw) ∧ rcwcv (cw, cv) is validated.
One literal rcxcy (cx, cy) indicates a relation(predicate) rcxcy ∈
Ec between the categories cx and cy , and its parameters must
be instances of categories cx and cy respectively.

In Figure 1, a simple example of the GRL algorithm for an
arbitrary graph is presented.

We have the closed triangle category group ∆c (Athlete,
SportsTeam, Sports League), and its three instances:
∆(Neymar Jr., Barcelona, Champions League), ∆(Jorge Val-
divia, Palmeiras, Brazilian Cup), and ∆(Lebron James, Miami
Heat, NBA).

The pair of categories of the group that has the greatest
extra neighbor value (the consequent of the rule) is (Athlete,
SportsLeague): ℵc(Athlete, SportsLeague) = 4, against
(Athlete, SportsTeam) and (SportsTeam, SportsLeague) that
have both 0.

To validate the rule, ℵc has to be greater or equal than
the given threshold that is equal to four. In this example the
rule will be created, and it says that if an athlete X plays for a
sports team Y and this sports team Y plays in sports league Z,
then athlete X plays in sports league Z. In this example, there
is also two other possible closed triangle category groups:
∆c (Athlete, Location, SportsLeague) and ∆c (Athlete,
Stadium, SportsLeague), but no pair (Λ) of this groups
achieves an ℵc greater than 4.

In a closed triangle category group, more than one triple
of relations is possible, for instance: The group ∆c (Athlete,
SportsTeam, SportsLeague), we can have the instances:
∆ (NeymarJr., Barcelona, Champions League) and
∆ (NeymarJr., RealMadrid, ChampionsLeague). The
triple of relations for the first one is (playsIn, playsLeague,
playsInLeague) and for the second is (playsAgainst,
playsLeague, playsInLeague). Having multiple triples of rela-
tions inside the same group, indicates that multiple rules can
be created, so it is needed to decide how to choose among
these multiple triples of relations. For now the GRL just counts
the occurrence of each triple inside a closed triangle category
group and pick just the one that occurred more frequently,

but there are other ways to treat this problem, in the example
above the two relation triples could generate correct rules. In
the future we plan to explore other possibilities.

When using NELL’s KB (as well as any other ontological
KB) as input, it is expected to find several repeated rules in
terms of predicates, but with different categories as parameters.
This is expected mainly because, in such KBs, there are
hierarchy among categories and multi-categorized instances.
See the example below of GRL’s output on NELL’s graph:

teamPlaysSport(sportsTeam, sport)⇐=

athleteP laysSport(personAsia, sport)

∧ athleteP laysForTeam(personAsia, sportsTeam)

teamPlaysSport(sportsTeam, sport)⇐=

athleteP laysSport(personUsa, sport)

∧ athleteP laysForTeam(personUsa, sportsTeam)

Following along these lines, a grouping and ranking process
is applied on the GRL output. This process consists to simply
group all rules sharing repeated predicates in one single
generic rule with variables (I , J and K) as parameters, and
rank these rules by the number of occurrences on GRL’s output
list. After this process, we can use this rank to increase
confidence in some of the rules. Experiments over this process
are present in Section V.

B. GRL Implementation

One common problem when implementing a graph mining
algorithm is scalability, mainly when working with graphs
having a growing number (from hundreds to millions and
sometimes billions) of nodes and edges. To cope with this
scalability issue, GRL stores the graph representation in disk
using a structure called GraphDB-Tree [8]. GraphDB-Tree is
a data structure designed to fast storage and recovery of a
graph on secondary memory. The complexity to recover the
neighbor list for any node is O(1), so it’s very efficient to
algorithms that uses just the locality of the nodes (e.g., find
graph cliques (such as triangles), calculating some LP metrics:
common-neighbors, extra-neighbor, Jaccard, Salton, etc).

V. EXPERIMENTS

In this section we show some results (inference rules) of a
GRL experiment using both NELL’s KB, as well as YAGO’s
KB as input. Also, we present experiments running GRL based
on different link-prediction scores in place of extra-neighbors
to validate rules5.

A. Finding Inference Rules with GRL

1) GRL applied to NELL’s KB: In this experiment, NELL’s
KB, also called rtwgraph, was used as input for GRL. NELL’s
KB is automatically extended and populated in a iterative
fashion. For this experiment we use the KB from itera-
tion 820, (rtwgraph had around 700.000 nodes and 500.000

5All the experiments were performed using a personal computer with
Intel(R) CoreTM i72.49Hz with 6GB of RAM and on Linux Ubuntu
12.04 (32 bits)

edges).Using threshold equal to ten (xi = 10), the output
rule list rl1 contains 3.780 rules before the grouping process.
Examples:

R1. teamplayssport(sportsteam, sport)⇐=

athleteplayssport(sport, personUsa)

∧ athleteplaysforteam(personUsa, sportsteam)

R2. headquarteredin(city, company)⇐=

atlocation(company, buildingfeature)

∧ atlocation(buildingfeature, city)

2) Grouping and Ranking Repeated Rules.: As we are
working with an ontological graph, lots of rl1 rules are
repeated, with only the parameters of relations being different.
Thus, as previously mentioned, one extra grouping step is
needed. Grouping this rules into generic ones and ranking
them (based on the number of times it is repeated in rl1)
generates a new rule list rl2, with 870 rules. Two of the top
ranked rl2 rules are presented below, see more in the appendix.

R1. athleteplayssport(X,Z)⇐=

teammate(X,Y) ∧ athleteplayssport(Y,Z)

R2. animalistypeofanimal(X,Z)⇐=

animalistypeofanimal(X,Y)

∧ animalistypeofanimal(Y,Z)

3) GRL applied to YAGO KB: As it was mentioned be-
fore, YAGO[3] is an OKB such as NELL, that mined data
from repositories such as wordnet6 and wikipedia7. In this
experiment, YAGO’s KB was used as input for GRL, the only
problem we had was that YAGO’s ontology has a big hierarchy
with tens of thousands of categories (while NELL has less
than a thousand)8, so, GRL grouping process was not very
effective. We could extract around 350.000 categorized nodes
and 550.000 edges from YAGO’s(1) KB. Using threshold
equal to ten (xi = 10), the output rule list rl1 contains 286
rules before the grouping process. After the grouping and
ranking process, the output rule list rl2 contains 88 rules.
Examples:

R1. locatedIn(X,Z)⇐=

hasCapital(X,Y) ∧ locatedIn(Y,Z)

R1. hasPredecessor(X,Z)⇐=

hasPredecessor(X,Y) ∧ hasPredecessor(Y,Z)

4) Validating rules: GRL algorithm (and most other link-
prediction algorithms) does not present 100% precision. We
add the group process to make the output rules more generic,
and we use the rank given on this process to help enhance
confidence in some rules. In table I the precision curve over
this rank is present for NELL and YAGO experiment.

6https://wordnet.princeton.edu/
7http://en.wikipedia.org/
8Yago has very specific categories, such as: “Bob Dylan albuns” and “String

quartets by Ludwig van Beethoven”

TABLE I
APPLYING RANK AS THREESHOLD (GRL’S WITH ξ = 10)

GRL’s output precision by rank
NELL YAGO

rank ≥ t.r c.r t.r c.r
20 13 61.64% 3 100.00%
15 20 60.00% 3 100.00%
10 31 54.84% 7 71.42%
9 38 60.53% 8 62.25%
8 44 61.36% 9 66.66%
7 51 56.86% 9 66.66%
6 74 51.35% 12 58.33%
5 100 47.00% 15 53.33%
4 141 43.97% 17 52.94%

Table I contains statistics captured by selecting rules on
the grouped list by the rank given on the group process.
Despite the fact that the proposed rank can help to give more
confidence to some rules(since for lower ranked rules the
precision tends to fall as shown in Table I), it is easy to see
that using the rank as a fixed threshold tends to promote the
extraction of wrong rules. It is important to recall that in a
never-ending learning environment (such as NELL), wrong
knowledge (generated by wrong rules) can be propagated
and deteriorate the whole KB (because of semantic drift). To
manually classify rules is a valid option and in the future
to automate the identification of correct and wrong rules it
is possible to train a simple classification model using these
manually classified rules.

B. Using different link-prediction metrics

In addition to the extra-neighbors (EN) metric, we’ve also
performed experiments using rtwgraph as input, and common-
neighbors (CN), Jaccard(Jac) and Salton(Sal) metrics during
the rule extraction process. In Table II we present the pre-
cision of each metric selecting grouped rules using rank as
threshold.9

Fig. 2. Precision curve using different LP metrics

Figure 2 depicts the precision curve over the rank threshold
for each used metric. The extra-neighbors(EN) is in red, the

9The threshold value used in GRL for each metric was ajusted because of
the different magnitude of each formula

common-neighbors(CN) in green, the Jaccard(Jac) in light
blue and the Salton(Sal) in dark blue. Observing Table II
and Figure 2 numbers we can see that the extra-neighbors
metric achieved the best overall precision. If we compare by
the number of correct rules, this greater precision may not
look like a big deal, but when the number of rules grows such
difference can be more relevant.

C. Comparing GRL with simmilar state of the art Rule Learn-
ers

In this subsection, there’s a comparison of GRL with state-
of-the-art Rule Learner approach AMIE[12] and also with
PRA[5] (because it is a component of NELL10)

In Table III we present results of GRL, AMIE and PRA
running in NELL’s OKB iteration 88511. To evaluate the
precision we randomly pick 100 rules from each of the lists,
and manually classify them as correct or incorrect.

To have an idea of how good the rules are to generate new
facts to NELL, we apply the correct ones classified among
the 100 used to calculate precision to NELL’s OKB, then we
divide the total facts found by this values to get a normalized
measure. GRL rules generate on average more facts than
AMIE’s12.

It’s possible to see that GRL has only one format and
we consider that an advantage, mainly because it produces
very readable rules that are also easy to apply to the OKB.
AMIE has the same format as GRL and also another one that
have only one relation at the body of the rule, this might be
interesting too, with rules such as the one above:

AMIE.1 ismultipleof(X,Y)⇐=

animalistypeofanimal(X,Y)

AMIE.2. synonymfor(X,Y)⇐= synonymfor(Y,X)

The first rule above presents the generalization concept, we
could say that ismultipleof is a generalization(parent node) of
animalistypeofanimal, and the second presents the symmetry
concept, it represents the fact that relation synonymfor is
symmetric, thus if X is related to Y them Y is related to X.

PRA itself, has the most non-standarized rule format. We
found a correct rule created by both PRA and GRL, such
rule generates the same fact (has the same head), but with a
different body:

PRA. trophytisthechampionshipgameofsport(X,Z)⇐=

trophywonbyteam(X,Y) ∧ agentcontrols(W,Y)

∧ athleteledteam(W,Y) ∧ teamplaysport(Y,Z)

GRL. trophytisthechampionshipgameofsport(X,Z)⇐=

athletewontrophy(Y,X) ∧ athleteplaysport(Y,Z)

10And these three algorithms find inference rules from ontological knowl-
edge bases

11PRA found a larger amount of rules than the other two, because the
version we used is coupled with NELL and uses the whole OKB and not just
the (much smaller) set of beliefs

12PRA was not used in this experiment because it’s rules generally have
relations in the body that doesn’t have instances in beliefs set

TABLE II
EXPERIMENTING DIFFERENT LP METRICS: PRECISION STATISTICS USING RANK AS THREESHOLD

- Extra-Neighbors Common-Neighbors Jaccard Salton
rank ≥ Rules Precision Rules Precision Rules Precision Rules Precision

30 6 50.00% 6 33.33% 5 40.00% 5 20.00%
25 8 50.00% 8 37.50% 9 55.56% 5 20.00%
20 13 61.54% 12 50.00% 11 54.54% 13 46.15%
15 20 60.00% 20 60.00% 15 60.00% 13 46.15%
10 31 54.84% 35 45.71% 31 48.39% 30 50.00%
9 38 60.53% 41 51.22% 37 48.65% 38 52.63%
8 44 61.36% 47 51.06% 44 43.18% 42 52.38%

TABLE III
COMPARISON BETWEEN GRL, AMIE AND PRA

- RulesFound Precision Gen.Facts Format
GRL 459 42/100 = 42% 115.59 r ⇐= p1 ∧ p2
AMIE 982 35/100 = 35% 89.25 r ⇐= p1 ∧ p2 ∨ r ⇐= p
PRA 49966 33/100 = 33% − r ⇐= p1 ∧ p2 . . . ∧ pn (n ≥ 1)

Looking at these two rules it is possible to see GRL rule is
more readable and, also produces the same fact, but needing
a simpler “condition” (which means less computational effort
on generating facts).

D. Scalability

Experiments evaluating scalability performance of the GRL
implementation were not performed. Considering that most
of GRL computational effort is related to the task of finding
all closed triangles present in the graph, we can base our
scalability analysis upon results presented in [8].

VI. CONCLUSION

One of the biggest challenge in current research, focused on
automatically building Knowledge Bases from data, is how to
populate such Knowledge Bases to allow them to have enough
coverage, diminishing sparsity issues. In this sense, even
approaches based on never-ending learning principles suffer
from KB lack of coverage. Graph Rule Learner was designed
and implemented to be used having NELL’s KB as input. Its
algorithm considers that the input data is sufficiently accurate
and complete, even though being in constant evolution.

GRL, differently from most of the other current approaches,
explores ontological knowledge to get better results in infer-
ence rule extraction precision and scalability. Empirical results
show that GRL can cope with NELL’s KB characteristics
of being a big and never-ending growing KB, thus, not
being noise free, neither being complete. Also, GRL can be
considered generic enough to be used having other ontological
knowledge bases as input and it achieved great results when
compared with state of art Rule Learners such as AMIE and
PRA running with NELL base.

REFERENCES

[1] I. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” 2014.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
a collaboratively created graph database for structuring human knowl-
edge,” in In Proceedings of SIGMOD, 2008.

[3] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in In Proceedings of WWW, 2007.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.
Mitchell, “Toward an architecture for never-ending language learning,”
in Proceedings of AAAI, 2010.

[5] M. Gardner, P. P. Talukdar, B. Kisiel, and T. Mitchell, “Improving
learning and inference in a large knowledge-base using latent syntactic
cues,” in Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2013), 2013.

[6] S. Raghavan and R. J. Mooney, “Online inference-rule learning from
natural-language extractions,” Statistical Relational Artificial Intelli-
gence, vol. AAAI 2013 Workshop, pp. 57–63, 2013.

[7] A. P. Appel and E. R. Hruschka Junior, “Prophet – a link-predictor
to learn new rules on nell,” in Proceedings of the 2011 IEEE 11th
International Conference on Data Mining Workshops, ser. ICDMW ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 917–924.
[Online]. Available: http://dx.doi.org/10.1109/ICDMW.2011.142

[8] L. F. Navarro, A. P. Appel, and E. R. Hruschka Jr., “Graphdb - storing
large graphs on secondary memory,” ADBIS Special session on Big
Data: New Trends and Applications (BiDaTA) in conjunction with
the 17th East-European Conference on Advances in Databases and
Information Systems (ADBIS), vol. 17, pp. 177–186, 2013.

[9] J. Cowie and W. Lehnert, “Information extraction,” CACM, vol. 39(1),
p. 8091, 1996.

[10] S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 1(3), p. 261377, 2008.

[11] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin, “Relation extraction
with matrix factorization and universal schemas,” in Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Atlanta,
Georgia: Association for Computational Linguistics, June 2013, pp.
74–84. [Online]. Available: http://www.aclweb.org/anthology/N13-1008

[12] L. Galarraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Amie: Asso-
ciation rule mining under incomplete evidence in ontological knowledge
bases,” International World Wide Web Conference(WWW’), 2013.

[13] R. G. S. Dos Santos and E. R. Hruschka Jr., “Markov logic scalability
in a never-ending language learning system,” in Proceedings of the
NewsKDD Workshop: Data Science for News Publishing. Workshop at
the 20th ACM-SIGKDD Conference on Knowledge Discovery and Data
Mining - KDD2014, 2014, pp. 21–25.

[14] P. Jaccard, “Etude comparative de la distribution florale dans une portion
des alpes et des jura,” Bulletin de la Socit Vaudoise des Sciences
Naturelles, vol. 37, p. 547579, 1901.

[15] G. Salton and M. M. J., “Introduction to modern information retrieval,”
McGraw-Hill, Inc., New York, USA, p. 35, 1986.

