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3Departamento de Estatı́stica e Informática, Universidade Federal Rural de Pernambuco (UFRPE)

Email: {jeag, rbcp, acan}@cin.ufpe.br

Abstract—Group profiling methods aim to construct a descrip-
tive profile for communities in complex networks. The application
of such methods in the analysis of co-authorship networks enables
us to move forward in understanding the scientific communities,
leading to new approaches to strengthen and expand scientific
collaboration networks. This task is similar to the document
cluster labeling task, which encourages the adaptation of cluster
labeling methods for group profiling problems. In this work,
we present a comparative study of group profiling and cluster
labeling algorithms in a co-authorship network. A qualitative
survey was conducted to evaluate the generated profiles, as
well as the pros and cons of different profiling strategies, were
analyzed with concrete examples. The results demonstrated a
similar performance of both group profiling and cluster labeling
methods.

I. INTRODUCTION

It has long been realized that the analysis of co-authorship
graphs can help us to understand the structure and evolution
of corresponding academic societies. Communities play a
crucial role in co-authorship networks, since they reflect the
basis of collaboration networks among authors. Though widely
studied in its static and evolutionary aspects, little attention
has been devoted to the exploration of the nature of such
communities [1]. Even though social network analysis have
been frequently using data from scientific collaboration to
analyze these relations, most of these studies are focused on
the prediction of new relationships between collaborators, i.e.,
link predicton [2].

There are several reasons that can lead the community
formation in co-authorship networks [3]. Thus, an important
question such “how scientific communities in a co-authorship
network are built?”, enable us to move forward in understand-
ing the structure of this type of network. The investigation of
their characteristics and peculiarities may eventually lead to
new approaches to strengthen and expand scientific collabora-
tion networks.

According to [4], a network can be divided into three re-
gions: singletons (nodes that do not interact with other nodes),
isolated communities, and a giant connected component. Many
of real-world networks are composed by isolated communities,
and the natural interconnection of such groups along time is
rare. However, the characterization of such groups can enable
an external agent to encourage the relations among similar
groups, i.e., with the same interests. The process of extraction

of descriptive attributes from a group of people is referred to
as group profiling [5].

Given a network partitioned in communities, where each
node is represented by a set of features, a group profiling task
focuses in the automatic selection of the most descriptive user
features for each group (Figure 1).

A descriptive analysis of communities can be done in
basically three distinct ways [5]: Aggregation-based Group
Profiling (AGP), Differentiation-based Group Profiling (DGP)
and Egocentric Differentiation-based Group Profiling (EDGP).
In the first, the objective is to find feature values that are
most likely to occur within the group, ignoring the rest of the
network; both the second and the third strategies aim to select
features which differentiate one group from the others in the
network. In the differentiation approach, all other users of the
network are considered, while in the egocentric approach, only
its neighbors (i.e., the fringe1) are taken into account.

A previous comparative study [7], considered only one
method of each approach: Bi-standard separation (BNS) [8]
(DGP and EDGP) and TF [9] (AGP). The authors conclude
that the aggregation of individual features is applicable only
in a relatively noise-free environment. But, if profiles are built
over noisy attributes, such as user blog posts or self-reported
interests, differentiation-based approaches consistently outper-
form the aggregation-based approach. Although it showed
good results, the egocentric approach was less accurate than
global differentiation methods. In [6], a new DGP method was
proposed, the Wilcoxon Rank Sum Test (WRS), in a numeric
attribute context. The studies on group profiling are still very
limited. For example, previous works[7], [6], considered only
one DGP method, analysing only BNS and WRS, respectively.

Regarding objectives, group profiling is very similar to
a more established class of algorithms, known as cluster
labeling. The main differences between them are the source
of information (instance features for the first and both net-
work and node features for the latter) and the process of
identification of groups (traditional unsupervised learning, e.g.,
clustering, and network community detection). In fact, it is
relevant to analyze the performance of consolidated methods
of cluster labeling in the context of group profiling. Despite

1The fringe of a community P is defined as the set of all vertices not in
P , that have at least one connection to members of P .
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Fig. 1. An overview of the group profiling strategy [6].

some initial studies on the analysis of communities in co-
authorship networks [3], there is no previous study of group
profiling in such networks.

To address the limitations of previous studies, this work
presents an evaluation of differentiation-based methods for
the characterization of co-authorship network communities.
In such setting, network nodes represent authors, endowed
with side information, which is encoded as textual attributes
extracted from the titles and abstracts of the published papers.
About the information used to differentiate the groups, two
distinct classes of methods were considered in the present
study: network and non-network (i.e., cluster labeling) based
methods. The first class of methods incorporate network
structure in the process of group profiling. In this work,
two distinct network-based methods were considered: the
BNS [8], and a variation of the WRS defined in [6]. Non-
network methods comprise methods that do not consider any
network information in the group profiling task, e.g., cluster
labeling strategies. From this class, two distinct methods were
considered: a method based only on term frequencies, Term
Frequency - Inverse Document Frequency (TF-IDF) [9], and
the Chi-Squared Selection (χ2) [10].

Experiments were performed using data collected from the
ArXiv repository2. This dataset is maintained by Cornell Uni-
versity, and contains bibliographical records about thousands
of pre-print scientific papers. In this study, a subset of Artificial
Intelligence related articles were considered, from which a
co-authorship network was extracted. A community detection
algorithm [11] was then applied, resulting in a total of 10
communities, which were considered in the Group Profiling
strategies. In order to evaluate the final profiles assigned by the
four methods considered in this study, a total of 340 responses
were collected in a survey, where each response corresponds
to the profile that best represented a given community, among
four distinct profiles.

The remaining of this paper is organized as follows: problem
statement is firstly defined in Section II. In Section III,
the methods considered in this study are described in more
detail, followed by Section IV, in which the experimental
methodology is presented. In Section V, the results and the
discussion are presented. Finally, in Section VII presents some
conclusions and point some future works.

II. PROBLEM STATEMENT

In this section, a formal description of the characterization
of densely connected subgraphs (communities) problem is

2https://arxiv.org/

given. To this end, attribute data are modeled together with
graph data. Formally, the input is a graph G = (V,E)
with vertices V = {v1,v1, ...,vn} and edges E ⊆ V × V .
Additionally, each vertex is represented by a d-dimensional
vector, A ∈ Dd, where D comprises the attribute domain (e.g.,
{0, 1} or R). We assume an undirected graph without self-
loops, i.e. (v, u) ∈ E ⇐⇒ (u, v) ∈ E and (u, u) /∈ E.

A group/community is represented by a subgraph P =
(VP , EP ), where VP ⊆ V , EP ⊆ VP ×VP e EP ⊆ E. In such
setting, the characterization of a given group is defined as the
vector of attributes cP ∈ Dk, k ≤ d. This way there is a total
of
(
d
k

)
distinct characterizations for each group. The objective

is to select the best k descriptive attributes for each partition
cP . For such, one can define a scoring function f , to assign
the importance (i.e., descriptive score) for each attribute in a
given partition, and then select the top-k scored attributes.

III. METHODS

A brief overview of the differentiation methods considered
in this study is presented in this section: a profiling strategy
based on TF-IDF [9] features, χ2 [10], WRS [6] and BNS [7].
Also, a modification of the original method proposed in [6] to
the context of text-related attributes is described.

A. TF-IDF

TF-IDF is a numeric statistic usually used in information
retrieval and text mining applications. The objective is to
identify how important a word is to a document in a collection
or corpus. In the group profiling context, labels are generated
by the combination of intra-cluster (TF) and inter-cluster (IDF)
features. In this way, the importance of a given feature/word
A to label the group (P ) is given by:

fTF−IDF (A,P ) = tfA,P × idfA, (1)

where tfA,P corresponds to the frequency of occurrences of
feature A in group P , and idfA is a measure of the general
importance of the feature obtained by weighting how distintive
the feature A is, in relation to the rest of the network (G′).
Thus, attributes that present high (local) frequency in P ,
and simultaneously have low frequencies in G′ (overall low
frequency) receive higher scores. It is important to note that,
for textual attributes, we have as input a term frequency matrix
(see [9] for a more detailed description).

B. Chi-Square Selection (χ2)

The Pearson’s chi-squared is a statistical test used to eval-
uate how likely it is that the occurrence of an event matches
the initial expectations [8]. In particular, it can be used to



determine whether two events, X and Y , are statistically
independent. In the case of differential cluster labeling, let
X be a variable associated with the membership in a group
(P ) and Y a variable associated with the presence of a feature
(A). Let also both P and A be binary variables (0 or 1), the
Pearson’s chi-square equation can be rewritten as follows:

fχ2 =
∑

P∈0,1

∑
A∈0,1

(OP,A − EP,A)
2

EP,A
, (2)

where, O1,0 is the observed number of nodes in a particular
group that do not contain a certain feature, and E1,0 the ex-
pected number of nodes in a particular group but don’t contain
a certain feature. The initial assumption is that the two events
are independent, so the expected co-occurrence probabilities
can be calculated by multiplying individual probabilities

E1,0 = N ∗ P (P = 1) ∗ P (A = 0), (3)

where N is the total number of nodes in the network. Here
we find the dependence score of the feature (A) in the group
(P ) and in the rest of the network (G′), noting that for the
rest of the network we have G′ instead of P in the Equations
2 and 3; by selecting the attributes (CP ) with greater reliance
score on group compared to the rest of the network. In this
method for textual attributes we considered as input a terms
binary matrix.

C. Bi-standard separation (BNS)

The BNS [7] proposes an optimization strategy for the group
profiling problem. The method adopt binary classification
concepts in order to differentiate a given partition from the
rest of the network. It considers the group (P ) as the positive
instances (denoted “+”) and the other nodes that do not belong
to the group (G′) as the negative instances (denoted as “−”).
In this scenario, for a given A, true positive (tp) corresponds
to the number of positive instances containing feature A;
true negative (tn) to the number of negative instances not
containing feature A; false positive (fp) the number of negative
instances containing feature A, and, false negative (fn) to the
number of positive instances not containing feature A.

The true positive rate (tpr) is viewed as the conditional
probability of a given feature (i.e., A) occur in a group, while
the false positive rate (fpr) is the conditional probability of a
feature to occur outside the group:

tpr = P (A|+) =
tp

tp+ fn
, (4)

fpr = P (A|−) = fp

fp+ tn
(5)

Then, the most relevant attributes to describe a given group
are the ones with the highest k tpr values. In other words,
feature A should better explain the positive class rather than
the negative class. The calculation of the score a feature
applying BNS is defined as:

fBNS = |F−1(tprA)− F−1(fprA)|, (6)

where F−1 is the inverse cumulative probability function of a
standard normal distribution [8] and tprA ≥ fprA. Essentially,
only those features that frequently appear in one group but
rarely outside the group are selected.

D. Wilcoxon Rank Sum Test (WRS)

In [6], the Wilcoxon test was adapted to extract group
profiles in social networks. The approximate p-value of the
test is computed by a z-statistic [12]. In the context of group
profiling, the z-statistic can be calculated as follows: given the
sizes of one partition P and of the rest of the network G′ (i.e.,
G′ = G− P ), where |P | < |G′|:

Z =
R− µR

σR
, (7)

where R is the sum of ranks of the feature (A) values in the
partition P , and µR and σR are respectively the mean and
standard deviation.

Unlike [7], the approach proposed in [6] has as input
distributions of attributes (numerical data). In the present work,
an adaptation is proposed, in order to make use of textual
features/terms. As the purpose is to characterize the group, a
constraint is added to the initial selection of attributes, i.e., the
average of the attribute in the group (mP ) must be larger than
the comparison sample (e.g., the rest of the network, mG′ ),
i.e., mP > mG′ . Thus, the z-statistic compares the feature
values distributions of two distinct vertex sets, in a way that
the k features with smaller p-values(score) are selected (CP ).

IV. EXPERIMENT SETUP

This section describes the co-authorship network data set,
the community detection procedure and the evaluation strategy
to analyze the profiles assigned by the considered group profile
methods.

A. Data Set

As aforementioned, to conduct a group profiling study, a
suite of related data on individual attributes is necessary.
Hence, we selected the arXiv co-authored network data in
our case study. Maintained by Cornell University, this data
set contains millions of bibliographical records and pre-print
scientific papers, mostly in mathematics, computer science,
biology, finance and statistics.

Seeking to facilitate the meeting of qualified evaluators for
experiments, only papers in the field of Artificial Intelligence,
published between 2012 and 2014, were considered in this
study. In the constructed network, each node represents an
author, and two nodes are connected if they have co-authored
at least one paper. The resulting network contained 1850
authors with 2560 relationships. Major network statistics are
presented in Table I.



B. Authors’ Representation

Each network node (i.e., author) is associated with side
information, describing the articles he has authored. To do so,
several text processing procedures were performed. Firstly, all
published papers of each author were collected and combined
into a single document. Then, a series of pre-processing steps
were applied for each document: tokenization; removal of
stopwords3; stemming (reducing inflected (or sometimes de-
rived) terms to their word stem, base or root form); removal of
non-nouns and non-adjectives [13]; and, finally, composition
of n-gram composed words (n = {1, 2, 3}), increasing the
attribute vector (A) for 3d− 3 dimensions.

C. Community Detection

Since no explicit community has been defined in arXiv co-
authored network yet, the application of external algorithms to
identify communities groups was mandatory. Before that, all
singletons (i.e., nodes that do not interact with anyone) were
removed. Then, the Gephi [14] implementation of the Multi-
level Aggregation Method [11], was applied to the resulting
network, resulting in a total of 439 identified groups. This
high number of communities is mainly because of the high
number of small groups of nodes with very few connections,
not attaching to any other larger community.

Groups that had fewer than ten users were removed since
they were considered too small and irrelevant for the study.
Also, the communities were filtered according to their density
values, resulting in 10 remaining groups. Table I shows the
final network statistics.

TABLE I
NETWORK RELATED MEASURES OF THE INITIAL ARXIV CO-OCCURRENCE

NETWORK AND AFTER FILTER APPLICATION

Measure Original Filtered
#Authors 1850 372
#Links 2560 654
Link Density 0.001 0.009
Average Link 2.768 3.516
Diameter 19 19
Number of Groups 439 10

The final communities can be visualized in Figure 2. The
statistics of each group are presented in Table II, including
the size, density, average degree and cohesion of each group.
Cohesion was calculated based on the cosine metric [15], i.e.,
the average similarity of each paper of the group with all other
articles. It is also possible to identify in the table groups that
are more dense than others, for example, groups 145 and 134.

D. Evaluation

To achieve a clear notion of quality of the generated labels,
all competing approaches were evaluated under the same
conditions, i.e., the same network, communities and node
representation. As there is no guideline or gold standard for the

3Stopwords is a list of all non-informative terms in a document, usually
composed of prepositions, articles, adverbs, numbers, pronouns and punctua-
tion.

TABLE II
STATISTICS ON GROUPS

Group Size Average Degree Density Cohesion
6 41 2.829 7.1% 0.248
80 28 2.929 10.8% 0.384

104 68 3.735 5.6% 0.307
116 28 3.929 14.6% 0.363
134 60 3.167 5.4% 0.299
145 14 3.429 26.4% 0.377
151 18 3.333 19.6% 0.346
153 53 3.321 6.4% 0.337
156 29 3.724 13.3% 0.352
256 33 3.273 10.2% 0.316

Labels Groups

Fig. 2. Resulting network and detected communities.

evaluation of the detected profiles, we resort to a human blind
selection of the best labels for each group. Each evaluator was
presented to a form containing:

1) The titles of the ten most cohesive papers4 in the
group (with a link to the abstract in arXiv web page).
This selection was necessary since it is impossible for
evaluators to consider all papers simultaneously5;

2) A table with the generated profiles, i.e., the ten most
representative terms, detected by each method (one per
column).

3) Evaluation question: “Based on these articles, which
method produced the best profile for the group?”

4) Finally, a space for the selection of the best method.

On each evaluation page, the four methods were denoted
as “Method I”, “Method II”, “Method III” and “Method
IV”, as well as the presentation order of group profiles was
randomized for each page, to avoid the bias associated with
the method names.

4One paper is considered cohesive if it presents great similarity to the
content found in the group.

5As we notice in one pilot study, subjects tend to assign random ratings if
the task takes too long.



V. EXPERIMENT RESULTS AND DISCUSSION

A total of 34 people with diverse backgrounds (undergrad-
uate, graduate students, university faculty) participated in the
survey, which resulted in 340 evaluations. The percentage of
answers where each method was marked as “best labels” is
presented in Table III.

TABLE III
PERCENTAGE OF ANSWERS WHERE EACH METHOD WAS MARKED AS

“BEST LABELS” (AVERAGE OVER ALL GROUPS).

WRS Chi-Square BNS TF-IDF
23.82% 27.65% 17.66% 30.9%

Although TF-IDF method is one of the simplest methods,
it achieved the highest overall performance in the survey.
In contrast, the BNS method obtained the lowest overall
performance. The methods WRS and Chi-Square were quite
similar, in average. The WRS was pointed as the best profile
in groups 134 and 151, while the Chi-Square was the best in
groups 104, 153 and 156 (Details Figure 3). The group 145 did
not have one major best profile among raters, presenting equal
rates for methods WRS, BNS, and TF-IDF (i.e., good profiles
generated). This is precisely the group of higher density, which
demonstrates the importance of this metric in the performance
of all methods since this represents the degree of connectivity
of the authors group.

Fig. 3. Bar graph with the results for each group.

To assess whether there were statistical differences between
the methods, the non-parametric Friedman test [16] was ap-
plied (α = 0.05). Although this is a relatively conservative
test, it allows the comparison of multiple methods, checking
whether there is statistically significant difference between
them. Since no significant differences were detected between
the methods (p = 0.753), the post-hoc test (Nemenyi test)
was not applied. This can be in part explained by the low
number of samples (i.e., groups) used as input for the test.
However, this demonstrates the feasibility of the methods
for group characterization (or group profiling) in complex
networks making use of textual attributes.

In order to check if the profiles indicated by each method
are similar or not, the generated profiles of each method were
also compared. For such, the Jaccard similarity coefficient
[15] was applied, which returns a similarity measure between
finite sample sets. It is defined as the size of the intersection
divided by the size of the union of the sample sets. This
analysis showed that all methods returned similar profiles in
average, with TF-IDF and Chi-Square being slightly more
different (Table IV). It is important to note that, for some
groups, these two methods returned even more similar profiles
(SJaccard = 0.4280).

TABLE IV
JACCARD COEFFICIENT OVER GENERATED PROFILES.

WRS CHI-SQUARE BNS
CHI-SQUARE 0.0052 - -

BNS 0.0000 0.0491 -
TF-IDF 0.0458 0.2300 0.0105

To perform an analysis of the output of different methods,
here we show two concrete examples: groups 80 and 134.
Table V presents profiles extracted to describe these groups
based on titles and abstracts of authors’ papers. The features
are sorted by alphabetic order, seeking to facilitate a compar-
ison between the profiles generated by each method.

Group 80 has 28 authors and is the most cohesive group
among all (Table II). It can also be noted that the charac-
teristics selected by WRS and BNS (Table V) do not have
very much relevance for the group description, for exam-
ple, ‘evidence’, ‘fault’, ‘positive’, ‘convention’, ‘continuous’,
‘control’, ‘time’, ‘utility’ and so forth. However, the Chi-
Square and the TF-IDF methods have many terms in common,
as already indicated by the Jaccard similarity coefficient.
Among the terms selected by Chi-Square method, one can
find ‘Bayesian’, ‘Bayesian networks’, ‘probabilistic’, reflect-
ing studies in Bayesian learning. This turns out to slightly less
specific in the profile generated by the TF-IDF method, with
the addition of other terms, such as ‘models’ and ‘probability’.
Thus, one can conclude that the group 80 is a machine
learning community based on probabilistic models, focused on
the study of Bayesian networks and Stochastic and dynamic
models of learning.

On the other hand, group 134 is the second largest group,
with 60 authors and the lowest density (5.4%). The WRS
method has proved robust in the characterization of this group,
despite the low density, detecting good characteristics such as:
‘DEC-POMDPs’6 (decentralized partially observable Markov
decision process), ‘MER’7 (Most Relevant Explanation), ‘ob-
servable Markov decision’, ‘optimal policy’ (multi-agent sys-
tem algorithm), ‘multiagent’ and ‘heuristic’. All other methods
generated surface profiles, abstracting the central content of the
group, with small differences observed in the TF-IDF profile,
which adds some more specific terms as ‘linear programming’

6Is a very general model for coordination among multiple agents
7method to automatically identify the most relevant target variables in

forming its explanation.



TABLE V
PROFILES FOR GROUPS 80 AND 134 IN ARXIV.

Group 80 Group 134
WRS Chi-Square BNS TF-IDF WRS Chi-Square BNS TF-IDF

convention bayesian continuo algorithms DEC-POMDPs algorithms algorithms basis
effort bayesian networks control approximate heuristic approach approach circuit

engineering belief empirical bayesian MRE decision decision concept
evidence inference expert bayesian network multiagent functions heuristics hierarchy

fault method method inference observable markov decision optimality method kernel
inference bayesian networks powerful method online papers model linear programming

knowledge engineering papers simple models optimal policy representations networking practice
positive probabilistic system networks policy sampling optimal reward

sensitivity analysis probability time probabilistic search search planning suitable
SPI utility utility probability speedups value policy value function

and ‘kernel’. Based mainly on the profile generated by the
WRS method, we can interpret the group 134 as a community
focusing on studies of Knowledge-Based Agents and multi-
agents systems, considering the technical applications such as:
MER, Markov models and the use of heuristics functions. This
small analysis encourages further studies on the influence of
density on the performance of group profiling methods.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a comparative study with four differentiation-
based group profiling methods, WRS, TF-IDF, BNS and X2,
was performed. To do so, profiles of 10 distinct co-authorship
groups were generated automatically. The results demonstrated
a very similar performance of the four evaluated methods,
although some group characteristics, such as cohesion and
density community, had an influence on the performance of
some methods.

To the best of our knowledge, this was the first time that
cluster labeling techniques were compared against group pro-
filing algorithms. It also introduces group profiling techniques
to the analysis of co-authorship scientific collaboration data.
These insights help to explain why the authors connect and
interact with them in authorship network, may eventually
lead to new approaches to strengthen and expand scientific
collaboration networks.

As future work, adaptations of the evaluated group profiling
methods under an egocentric differentiation perspective can be
done, minimize the imbalance among the classes, as well as
improvements to the textual preprocessing.
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