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Abstract—In this paper, we use the concept of extended
Choquet integral generalized by a copula function, as proposed
by Lucca et al.. More precisely, the copula considered in their
study uses a variable α, with different fixed values for testing its
behavior. In this contribution we propose a modification of this
method assigning a value to this α parameter using a genetic
algorithm in order to find the value that best fits it for each
class. Specifically, this new proposal is applied in the Fuzzy
Reasoning Method (FRM) of Fuzzy Rule-Based Classification
Systems (FRBCSs). Finally, we compare the results provided by
our new approach against the best solution proposed by Lucca
et al. (that uses an fixed value for the variable α). From the
obtained results it can be concluded that the genetic learning
of the α parameter is statistically superior than the fixed one.
Therefore, we demonstrate that our genetic method can be used
as an alternative for this function.

I. INTRODUCTION

Fuzzy Rule-Based Classification Systems (FRBCSs) [1] are
a powerful tool and widely used in classifications problems.
Since this kind of systems have a good classification rate
and provide interpretable models by using linguist labels in
their antecedent rules, FRBCSs have been applied in severals
real world problems, including industry [2], health [3], econ-
omy [4] and many others.

Lucca et al. [5] proposed the concept of extended Choquet
integral, by distributing the fuzzy measure in this function
and generalizing this extended function by a copula function,
which are functions that link (two-dimensional) probability
distribution functions to their one-dimensional margins, play-
ing an important role in the theory of probabilistic metric
spaces and statistics [6], therefore, introducing a family of
Choquet-based non-associative aggregation functions.

These functions were applied in the Fuzzy Reasoning
Method (FRM) of FRBCSs, in order to improve the quality
of the system. This copula function is directly related to an α
variable, so, they tested in this function 5 different fixed values
for this variable, showing that the copula function using an α
= 0.1, present a good classification rate in the study.

In this paper, based on the idea presented by Lucca et al. [5],
we proposed a new way to deal with the usage of this variable
α, using a genetic algorithm to learn the most suitable value
of this alpha parameter for each class. However, instead of
using the Chi et al. [7] algorithm to accomplish the fuzzy
rule learning process, we consider the usage of the FARC-
HD [8], since it is one of the most accurate fuzzy classifier
nowadays [8], [9], [10], [11].

In order to demonstrate the quality of our approach, we
have selected 30 datasets that are available in KEEL1 database
repository [12]. We analyze the behavior of our genetic method
with respect to the best value for the alpha parameter presented
by Lucca et al. in [5]. Finally, our conclusions are supported
by the Wilcoxon signed-rank test [13].

The paper is organized as follows. Section II presents some
preliminary concepts that are necessary to develop the paper.
In section III the proposed FRM is presented, along with the
approach to use the genetic learned value for the parameter α.
We explain the experimental framework, the results achieved
in test by the application of the generalized Choquet integral
in FRBCSs and the analyze of these results in Section IV. The
main conclusions are drawn in Section V.

1http://www.keel.es



II. PRELIMINARIES

This section aims at introducing the background necessary
to understand the paper. One important class of fuzzy operators
are the aggregation operators [14], [15].

Definition 1: A function A : [0, 1]n → [0, 1] is said to be an
n-ary aggregation operator if the following conditions hold:

(A1) A is increasing2 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the Boundary conditions: A(0, . . . , 0) = 0
and A(1, . . . , 1) = 1.

Definition 2: A bivariate function C : [0, 1]2 → [0, 1] is
a copula [6] if it satisfies the following conditions, for all
x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:

(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);
(C2) C(x, 0) = C(0, x) = 0;
(C3) C(x, 1) = C(1, x) = x.

An example of copula functions are the family of non-
associative bivariate functions Cα : [0, 1]2 → [0, 1], defined,
for any α ∈ [−1, 0[ ∪ ]0, 1], by:

Cα(x, y) = xy(1 + α(1− x)(1− y)). (1)

In the following, consider N = {0, . . . , n}.
Definition 3: A function m : 2N → [0, 1] is a discrete fuzzy

measure [16], [17] if, for all X,Y ⊆ N , it satisfies properties:
(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.
In this paper, we consider the power measure mCard GA :

2N → [0, 1], defined, for X ⊆ N , by:

mCard GA(X) =

(
|X|
n

)q
, with q > 0, (2)

where the exponent q is learned genetically.3 We consider the
discrete Choquet integral, related to discrete fuzzy measures:

Definition 4: [14, Def. 1.74] Let m : 2N → [0, 1] be a
discrete fuzzy measure. The discrete Choquet integral for m
is defined as a function Cm : [0, 1]n → [0, 1], given by

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (3)

where (x(i), . . . , x(n)) is a increasing permutation on the input
x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that
x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices
of n− i+ 1 largest components of x.

Observe that the Eq. (3) can be also written as:

Cm(x) =

n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
, (4)

which we call the Choquet Integral in its expanded form.

2In this paper, a increasing (decreasing) function does not need to be strictly
increasing (decreasing).

3The choice for this fuzzy measure was based on the results obtained by
Barrenechea et al. [18], who introduced an evolutionary algorithm to define
the most suitable exponential cardinality definition to be used for each class.

The Choquet integral combines the inputs in such a way
that not only the importance of individual inputs or of their
magnitude are taken into account, but also the importance of
their groups (or coalitions in which it takes part), allowing to
assign importance to all possible groups of criteria. [19].

Definition 5: Let m : 2N → [0, 1] be a fuzzy measure and
Cα : [0, 1]2 → [0, 1] be the family of copula functions defined
in Eq. (1), for α ∈ [−1, 0[ ∪ ]0, 1]. The family of discrete Cα-
Choquet integrals with respect to m is defined as the function
CCαm : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

CCαm (x) =

n∑
i=1

Cα
(
x(i),m

(
A(i)

))
− Cα

(
x(i−1),m

(
A(i)

))
, (5)

where (x(i), . . . , x(n)) is a increasing permutation on the input
x and A(i) = {(i), . . . , (n)} is the subset of indices of n−i+1
largest components of x.

Then, substituting Eq. (1) in Eq. (5), one has that the
definition of the family of discrete Cα-Choquet integrals with
respect to m can be also given by:

CCαm (x) =

n∑
i=1

(xim(Ai)(1 + α(1− xi)(1−m(Ai))) (6)

−xi−1m(Ai)(1 + α(1− xi−1)(1−m(Ai)))).

For more informations see [5].

III. A PROPOSAL OF FUZZY REASONING METHOD USING
THE CHOQUET INTEGRAL GENERALIZED BY COPULAS AND

GENETIC ALGORITHMS

This section is aimed at introducing our proposal. Before
than, we start by describing the main concepts of FRBCSs,
the FRM using the generalized Choquet integral and finally,
the genetic approach for the α variable. For the following
consider that, a classification problem consists of m training
examples xp = (xp1, . . . , xpn, yp), with p = 1, . . . ,m, where
xpi, with i = 1, . . . , n, is the value of the ith variable and
yp ∈ Y = {Y1, . . . , YM} is the label of the class of the pth
training example. Among the different approaches presented
in the literature, we use the FRBCSs. These kind of system
have two main components:

1) Knowledge Base: it contains the Rule Base and the Data
Base. Considering that the fuzzy rules used in this work
have following form:

Rule Rj : Ifx1 isAj1 and . . . andxn isAjn
thenx inY kj withRWj ,

where Rj is the label of the jth rule, Aji is an antecedent
fuzzy set modeling a linguistic term, Y kj is the label
of the consequent fuzzy set Y k modeling the class
associated to the rule Rj , k ∈ {1, . . . ,M}, RWj ∈ [0, 1]
is the rule weight [20].

2) Fuzzy Reasoning Method: used to classify examples
using the information available in the knowledge base.
We must stress out that we consider the same FRM used
in [5].



The Fuzzy Association Rule-based Classification model for
High Dimensional problems (FARC-HD) is the fuzzy classifier
considered in this paper. As mentioned before, we consider the
usage of this classifier instead of the Chi et al. algorithm to
accomplish the task of the fuzzy rule learning process, since it
provides a better performance. The main components of this
classifier are the following ones:

• Fuzzy association rule extraction for classification: This
step is aimed to obtain the fuzzy rule base, to do so,
a search tree [21] is constructed for each class. The
confidence and support is calculated for each class con-
sidering each item (the item is a linguistic label). The
fuzzy rules are generated by the most frequent itemset
and the number of linguistic terms for each rule is limited
to the depth of the tree.

• Candidate rule prescreening: This step considers a
weighting scheme [22] to preselect the better generated
rules.

• Genetic rule selection and lateral tuning: This stage uses
an evolutionary algorithm to perform the lateral tuning
of the fuzzy sets [23] and select the best rules that were
generated in the previous steps.

A. A fuzzy reasoning method using the Choquet integral
generalized by copulas

We present in this subsection the combination of the ex-
tended Choquet integral by copulas and the FRM of FRBCSs.
For the following consider that xp = (xp1, . . . , xpn) be a new
example to be classified, L being the number of rules in the
rule base and M being the number of classes of the problem.
The FRM used in this paper is the same used in [5] and consist
in four steps:

1) Matching degree: it is the strength of the activation of
the if-part of the rules for the example xp, which is
computed using a t-norm T : [0, 1]2 → [0, 1], for j =
1, . . . , L:

µAj (xp) = T (µAj1(xp1), . . . , µAjn(xpn)). (7)

2) Association degree: it is the association degree of the
example xp with the class of each rule in the rule base:

bkj (xp) = µAj (xp) ·RW k
j , (8)

with k = Class(Rj) and j = 1, . . . , L.
3) Example classification soundness degree for all classes:

in this step, we use the proposed family of Cα-Choquet
integrals (Eq. (6)), with an α genetically learnt in ∈
[−1, 0[ ∪ ]0, 1] and the power measure mCard GA
(Eq. (2)), in order to combine the positive association
degrees calculated in the previous step, obtaining the
classification soundness degrees:

Sk(xp) = CCαmCard GA

(
bk1(xp), . . . , b

k
L(xp)

)
, (9)

with k = 1, . . . ,M . Since, whenever bki (xp) = 0, for all
α ∈ [−1, 0[ ∪ ]0, 1] , it holds that:

CCαmCard GA
(bk1(xp), . . . , b

k
L(xp)) =

CCαmCard GA
(bk1(xp),

. . . , bkj−1(xp), b
k
j+1(xp), . . . , b

k
L(xp)),

for practical reasons, only bkj > 0 are considered in
Eq. (9).

4) Classification: A decision function F : [0, 1]M →
{1, . . . ,M} defined over the example classification
soundness degrees of all classes and determining the
class corresponding to the maximum soundness degree
is given by:

F (S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (10)

B. A Genetic Approach to learn the α parameter for each
class

In this paper, we propose the usage of a value for the
variable α which is genetically learnt. Therefore, this section
is aimed to explain the main features of the genetic process
used to learn it.

Barrenechea et al., proposed in [18], the power measure, a
measure that raises the standard cardinality to an exponent q
using an genetic algorithm (CHC [24]) to adapt this exponent
for each class (Eq. (2)). Therefore, the main idea in this paper
is to use the same model, but also applying this method to
learn the α parameter for each class of the problem. That is,
for each class of the problem, we will learn the most suitable
value that model the interactions among the fired rules and the
considered class. The configuration of the evolutionary model
as presented in the following:

1) Coding Scheme: The chromosome is divided in three
main parts. The first one considers the genes related
to the the tuning of lateral position of the membership
functions [23] and have as many genes as the number
of linguistic labels considered in the data set, moreover,
having a range in [0, 1]; The second part has one gene
per number of class and it is used to learn the q exponent
related to the power measure [18], having a range in
[0, 2]; The third part consists in the genes used to the
α parameter, also using one gene for each class and
having a range [-1, 1]. As the defined in the function
(Eq. (1)) this alpha value must be a value in the range
∈ [−1, 0[ ∪ ]0, 1], therefore, if the selected value is 0, we
assign ”0.1” to α parameter, since it is the best solution
achieved by Lucca et al. [5].

2) Chromosome Evaluation: The fitness function consid-
ered in this paper is the standard accuracy.

3) Initial Gene Pool: Our population is composed by 50
individuals, and the initial pool is obtained with the
first individual having all genes with ”0.5” to perform
the tuning of the lateral position of the membership
functions, ”1.0” (which is the value for the cardinality
measure [18]) to the q exponent and ”0.1” to the α



variable. The remainder of the individuals are randomly
initialized in the ranks of each gene.

4) Crossover Operator: We consider the usage of the Parent
Centric BLX (PCBLX) crossover operator [25]. Two
parents are crossed if their hamming distance divide by 2
is superior than a predetermined threshold L. Moreover,
we consider the usage of the Gray Code where each
gene is converted to binary code with a fixed number of
bits for each gene (BITSGENE)4

L = (#Genes ·BITSGENE)/4.0

where #Genes is the total length of the chromosome.
5) Restarting Approach: Aiming to increase the conver-

gence of the algorithm, when the threshold value is
smaller than zero, we consider the usage of the best
chromosome (elitist scheme) and reset all the population
considering the range appropriate for each gene. If there
is no increment in the best solution, after three restarts
the process the process is finished.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

In this section, firstly we present the 30 real world classi-
fication problems selected from the KEEL dataset repository.
Furthermore, in the subsection IV-B, we present the achieved
results in test by the FRM generalized by our method, along
with an analysis of these obtained results.

A. Experimental Framework

The properties of the datasets, containing for each dataset,
the identifier (Id.), along with the name (Dataset), the number
of instances (#Inst), the number of attributes (#Att) and
the number of classes (#Class) are summarized in Table I.
The magic, page-blocks, penbased, ring, shuttle, satimage and
twonorm datasets have been stratified sampled at 10% in order
to reduce their size for training. Examples with missing values
have been removed, e.g., in the wisconsin dataset.

As proposed in [18], [9], [27], we adopt the 5-fold cross-
validation model, in other words, a dataset is splitted in five
random partitions, where each partition have 20% of the
examples, and a combination of four of them is used for
training and the remainder one is used for testing. This process
is repeated five times by using a different partition to test
the created system each time. In order to measure the quality
of each partition, the accuracy rate is calculated, that is, we
divide the number of correctly classified examples divided by
the total number of examples for each partition. Then, as the
final result of the algorithm we consider the average of the
achieved accuracy in this five partitions.

In relation to the features of the classifier FARC-HD, we
consider the standard configuration, that is:
• Conjunction operator: product t-norm
• Rule weight: Certain factor
• Five linguistic labels per class
• Minimum support: 0.05

4For more information see [26], [18].

TABLE I
SUMMARY OF THE PROPERTIES OF THE CONSIDERED DATASETS

Id. Dataset #Inst #Att #Class
App Appendiciticis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Iri Iris 150 4 3
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Vow Vowel 990 13 11
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

• Confidence limit: 0.8
• Depth of the tree: 3
Regarding the parameters of the genetic algorithm we

consider the following:
• Population size: 50 individuals
• Number of evaluations: 20.000
• Bit for each gene in the gray codification: 30 bits.

B. Analysis of the results provided by the genetic learning of
the α parameter

This subsection present the results achieved in test by the
FRM generalized by the copula function Cα genetically learnt
(CαGen) along with the best fixed alpha value presented
in [5], that is, Cα=0.1. The results achieved in testing by these
approaches are presented in Table II by columns along with
the standard deviation, also the best result achieved among the
different datasets is highlighted in boldface.

From the results shown in the Table II, it is possible to
observe that our approach using an parameter α, which is ge-
netically learnt, presents a good performance, since it achieves



TABLE II
RESULTS IN TESTING PROVIDED BY BOTH, THE COPULA THAT USES A

FIXED VALUE AND THE ONE WHICH USES THE GENETIC APPROACH.

Dataset Cα=0.1 CαGen
appendicitis 80.26 ± 8.21 82.08 ± 6.19
balance 81.76 ± 1.54 83.04 ± 1.73
banana 85.98 ± 1.15 86.02 ± 2.30
bupa 64.93 ± 4.96 66.96 ± 3.30
cleveland 52.86 ± 2.27 57.90 ± 1.47
ecoli 77.39 ± 5.97 76.80 ± 6.39
glass 63.55 ± 1.97 65.43 ± 3.74
haberman 73.18 ± 4.25 72.85 ± 4.85
hayes-roth 80.23 ± 7.04 80.23 ± 7.04
iris 93.33 ± 4.71 94.00 ± 4.35
magic 79.33 ± 3.15 79.81 ± 2.72
newthyroid 93.02 ± 2.85 93.02 ± 3.68
pageblocks 94.34 ± 1.21 93.61 ± 1.47
phoneme 82.66 ± 1.50 82.83 ± 1.43
pima 74.21 ± 3.76 74.99 ± 3.34
titanic 78.87 ± 1.48 78.87 ± 1.48
wine 93.27 ± 5.03 94.94 ± 4.13
wisconsin 96.49 ± 1.30 96.20 ± 1.58
yeast 57.21 ± 2.47 56.94 ± 1.45
ring 88.51 ± 3.54 89.46 ± 3.43
segment 93.16 ± 0.79 92.90 ± 0.42
twonorm 83.92 ± 3.49 83.92 ± 2.63
vehicle 69.38 ± 2.95 69.03 ± 2.53
bands 69.14 ± 6.25 68.81 ± 4.17
penbased 90.91 ± 1.96 90.27 ± 1.31
satimage 78.69 ± 2.16 80.24 ± 2.71
saheart 70.33 ± 4.09 68.61 ± 2.16
spectfheart 78.64 ± 5.29 78.23 ± 7.50
shuttle 97.43 ± 1.05 97.52 ± 1.01
vowel 66.36 ± 2.80 68.38 ± 3.72
Mean 79.65 80.13

a good mean, superior than that presented by the copula
function that uses an fixed alpha parameter. Furthermore, if
we look closer, it is possible to observe that CαGen achieves
a better classification rate in 16 datasets under this study.
Obviously, Cα=0.1 achieved a better performance than the
genetic methodology in 12 datasets and they tie twice (Titanic
and Hayes-roth datasets). In order to support the quality of
this study, we present an appropriate statistical study.

More specifically, we carried out a pair-wise comparison be-
tween the genetic approach (CαGen) versus the fixed approach
(Cα=0.1) using the Wilcoxon signed-rank test [13]. Table III
present the results of this comparisons, where R+ indicates
the ranks obtained by CαGen and R− represents the ranks
achieved by Cα=0.1.

According to the obtained statistical results presented in Ta-
ble III, we can affirm with a high level of confidence, that there
are statistical differences among these two generalizations. We
must highlight that our genetic approach achieves a bigger
rank and mean, thus, reinforcing the results obtained in the

TABLE III
WILCOXON TEST TO COMPARE THE DIFFERENT ALPHAS IN THE COPULA

FUNCTION Cα .

Comparison R+ R− p-value
CαGen vs. Cα=0.1 306 159 0.096

statistical test.

V. CONCLUSION

In this paper, we introduce an genetic approach to learn the
parameter α used in a generalized Choquet integral. The study
is defined in a similar way of the one presented by Lucca et
al. [5].

We applied the generalized Choquet integral based on the
copula function Cα=0.1 and CαGen in the FRM of FRBCSs.
Moreover, we have to highlight that this genetic approach
allows to conclude that this generalization is statistically
superior than the one that uses a fixed value in the α parameter.
Therefore, the proposed methodology in this work is an
alternative to the function presented by Lucca et al. [5],
whereas an improvement in the quality of the new FRM was
presented.

Future work is concerned with the usage of different copula
functions and also the study of the properties satisfied by the
generalized Choquet integral.
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[22] B. Kavšek, N. Lavrač, and V. Jovanoski, Advances in Intelligent Data
Analysis V: 5th International Symposium on Intelligent Data Analysis,
IDA 2003, Berlin, Germany, August 28-30, 2003. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, ch. APRIORI-SD: Adapt-
ing Association Rule Learning to Subgroup Discovery, pp. 230–241.

[23] R. Alcala, J. Alcala-Fdez, and F. Herrera, “A proposal for the genetic
lateral tuning of linguistic fuzzy systems and its interaction with rule
selection,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp. 616–
635, 2007.

[24] L. J. Eshelman, “The CHC adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,”
in Foundations of Genetic Algorithms, G. J. E. Rawlings, Ed. San
Francisco: Morgan Kaufmann, 1991, pp. 265–283.

[25] F. Herrera, M. Lozano, and A. M. S’anchez, “A taxonomy for the
crossover operator for real-coded genetic algorithms: An experimental
study,” International Journal of Intelligent Systems, vol. 18, no. 3, pp.
309–338, 2003.

[26] J. A. Sanz, A. Fern’andez, H. Bustince, and F. Herrera, “Improving the
performance of fuzzy rule-based classification systems with interval-
valued fuzzy sets and genetic amplitude tuning,” Information Sciences,
vol. 180, no. 19, pp. 3674 – 3685, 2010.

[27] J. Sanz, A. Fernández, H. Bustince, and F. Herrera, “IVTURS: A
linguistic fuzzy rule-based classification system based on a new interval-
valued fuzzy reasoning method with tuning and rule selection,” IEEE
Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 399–411, 2013.


