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Abstract—Recent advances on multi-objective evolutionary
algorithm (MOEAs) have acknowledged the important role
played by selection, replacement, and archiving strategies in the
behavior of these algorithms. However, the influence of these
methods has been scarcely investigated for the particular class
of MOEAs that use probabilistic modeling of the solutions.
In this paper we fill this void by proposing an analysis of
the role of the aforementioned strategies on an extensive set
of bi-objective functions. We focus on the class of algorithms
that use Gaussian univariate marginal models, and study how
typical selection and replacement strategies used together with
this probabilistic model impact the behavior of the search. Our
analysis is particularized for a set of bi-objective functions that
exhibit a representative set of characteristics (e.g. decompos-
able, ill-conditioned, non-linear, etc.). The experimental results
shows that MOEAs that use simple probabilistic modeling
outperform traditional MOEAs based on crossover operators.

Keywords-multi-objective optimization; estimation of distri-
bution algorithms; Gaussian UMDA; selection;

I. INTRODUCTION

One of the questions that make the design and application
of evolutionary algorithms (EAs) and other optimization
methods a challenging task is the wide variety of potential
fitness landscapes where an algorithm could be applied.
Since no algorithm is expected to perform well for all
classes of functions, the creation of methods able to adapt
to the characteristics of the search space seems a reasonable
strategy for devising efficient search algorithms.

Among the methods that adapt the search of EAs to the
characteristics of the fitness landscape, we can highlight
the estimation of distribution algorithms (EDAs) [1]. These
methods replace the application of genetic operators by
the use of probabilistic models. The rationale is that the
probabilistic model could capture the most salient features of
the best solutions found during the search and generate new
solutions that keep these characteristic patterns. Probabilistic
modeling can explicitly detect and exploit some relevant
features of the fitness landscape, e.g. the decomposition of
the fitness function in groups of interacting variables.

Recently, probabilistic modeling has been also applied in
the multi-objective domain. Several types of multi-objective
estimation of distribution algorithms (MOEDAs) have been
proposed [2], [3], [4]. A common approach to the design
of MOEDAs is to replace the original application of the

genetic operators (crossover and mutation, or only crossover)
by a new step where a probabilistic model is learned from
the solutions contained in the archive. Then, the model is
used to generate (sample) new solutions. This approach often
produces optimizers that improve the efficiency of MOEAs
with simple genetic operators. However, the importance of
the interaction between the methods used to select, replace,
and archive the solutions with the probabilistic model is
usually overlooked.

Research on single-objective optimization has shown that
there is a close relationship between the type of selection
methods applied and the quality of the probabilistic models
learned and consequently the impact of model learning
on the search. Furthermore, this relationship between the
selection of solutions and model learning can depend on
the characteristics of the functions being optimized. Some
combination of selection and model learning methods can be
more effective for a particular class of functions. In MOEAs,
there are other factors that add together with probabilistic
modeling in the efficiency of the search. These factors
include replacement methods and archiving strategies. In
this paper we present some initial steps in the investigation
of the relationship between probabilistic learning and all
other factors previously mentioned. We focus on the simplest
model usually applied in EDAs, the univariate marginal
model [5] and use a recently proposed benchmark compris-
ing 55 bi-objective functions that represent different sources
of difficulty for EAs [6]. In our study, we apply state-of-
the-art benchmarking methods that allow us to extract sound,
statistically supported, conclusions about the influence of the
selection methods.

The paper is organized as follows: In the next section
we present the general framework of our study, where
recombination operators and all other MOEAs components
are divided into two main groups. Section II presents the uni-
variate marginal probabilistic model, describing the methods
used to learn and sample it. Section III describes the classical
MOEAs that are used as baselines for our investigation.
Section IV introduces the Comparing Continuous Optimizers
(COCO) [6] benchmark, and describes its main character-
istics. Section V presents the experimental framework and
discusses the results of the experiments. In Section VI, we
present the conclusions of the paper.



II. PROBABILISTIC MODELING USING THE GAUSSIAN
UNIVARIATE MODEL

Probabilistic modeling has been increasingly applied to
MOEAs. In this approach, problem regularities captured by
the probabilistic model are used to generate new solutions,
thus trying to successfully deal with the limitations of
traditional EAs. The probabilistic modeling can unveil useful
modularities of the problem and orientate the search to
promising areas of the search space.

One of the simplest approaches for probabilistic modeling
is to assume that the problem variables are independent
among them. Under this assumption, the probability distri-
bution of any individual variable should not depend on the
values of any other variables. EDAs of this type are usually
called univariate EDAs and in addition to problems where
some of the variables are independent, they can also solve
problems with weak interactions between the variables.

The continuous univariate marginal distribution algorithm
(UMDAc) proposed by Larrañaga et al. [5] belongs to the
class of univariate EDAs. It is an adaptation of the discrete
UMDA [7] for continuous domain, where one Gaussian
univariate model is learned for each variable. The univariate
Gaussian model factorizes a distribution as:
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where µ̂li and σ̂li are the mean and standard deviation,
respectively, computed from the selected population in the l-
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variable i for any selected solution r [5].
The initial population (l = 0) is generated from a uniform

distribution over the feasible search space. In the first
generation (l = 1), µli and σli are estimated based on selected
solutions from this random population. The model is then
used to sample new solutions and the same loop is applied in
each generation of the algorithm until some stop condition is
satisfied. Only three algorithm parameters must be specified
for an implementation of UMDAGc :the population size M ,
number of points to be selected (N ), and the method to
select these points (see Section III).

As baseline algorithms for comparison, we used MOEAs
that apply the Simulated Binary Crossover (SBX) and Poly-
nomial mutation [8] as crossover and mutation operators,
respectively. The SBX simulates the behavior of the single-
point crossover on binary strings. Given two parent indi-
viduals to be recombined, it generates the i-th component,
i = 1, . . . , n, of the children. The parameter ηc determines
how well spread the children will be from their parents.

III. METHODS FOR SELECTING THE BEST SOLUTIONS

This section briefly describes the MOEAs that will be
used in the experimentation phase. The algorithms were
selected because they implement selection and replacement
strategies that are very different to each other. Some of these
algorithms are among the most applied in the evolution-
ary computation community. The algorithms used were: 1)
NSGA-II [9]; SPEA2 [10]; 3) FEMO [11]; and IBEA [12].
In the following, we explain in few words the distinguished
features of each algorithm.

1) NSGA-II: The Elitist Non-dominated Sorting Genetic
Algorithm (NSGA-II) by Deb et al. [9] applies the rank as-
signed to each solution by non-dominated sorting as primary
selection method. Non-dominated individuals are assigned
rank one and the set of individuals with equal rank is called a
front. Those individuals that are non-dominated once the first
front has been removed are assigned as rank two. The third
front is decided within the population discarding the first and
the second front and so on. Individuals with equal ranks
are evaluated using a secondary selection method called
crowding distance (CD). The CD measures the distances to
the next higher and lower values in each dimension.

2) SPEA2: The Strength Pareto Evolutionary Algorithm
(SPEA2) by Zitzler et al. [10] uses two ranking criteria as
well. It is an elitist algorithm with an external archive, which
usually is set to be the population size. As primary selection
method, a strength value is used. This value is given by the
number of individuals in the population dominated by the
current individual.

Based on the strength values a raw fitness is computed for
each individual, as the sum of the strength values of every
individual that dominates it. Thus, every non-dominated in-
dividual has the raw fitness equals to zero. In a second stage,
a density estimation is performed based on the Euclidean
distances between all individuals. The primary fitness value
is the raw fitness plus the inverse of the sum of the distance
to the k-nearest neighbor (KNN) [13]. The individuals with
the best fitness are copied to the external archive for the next
generation. In case there is more non-dominated solutions
than the external archive size, the distance to the nearest
neighbors for increasing k is used as criterion. Another case
is that the non-dominated solutions are less than the external
archive size, then it will be filled by dominated solutions.

3) FEMO: The Fair Evolutionary Multi-objective Opti-
mizer (FEMO) [11] follows a strategy different to SEMO.
Basically, it intends to increase diversity by allowing all se-
lected individuals to produce a similar number of offspring.
It uses a so-called fair sampling strategy, ensuring that all
individuals would receive, approximately, the same amount
of samples. To implement this strategy, a local mutation
operator is applied to each solution. Additionally, a counter
is kept for each individual in the population to measure the
number of descendants it has created. The counter of an
individual would be set to 0 whenever a new individual is



produced. After a new solution x
′

has been generated, it will
be added to the archive. If there is not any other solution that
dominates x

′
or has the same function values as x

′
, means

that solution x
′

will be part of the parent population for the
next generation, and also means that the parent population
are filled with the non-dominated solutions.

4) IBEA: In Zitzler’s and Kunzli’s [12] IBEA algorithm,
the use of binary performance metrics that map an ordered
pair of individuals to a scalar value were suggested as
indicator functions. A suitable indicator has to be dominance
preserving, which means that the indicator must not evaluate
a vector better than another that dominates it. Two efficiently
computable indicators have been suggested in [12].
• The additive ε-indicator comprises the translations in

each dimension of objective space that are necessary
to create a weakly dominated solution.

• The hypervolume indicator measures the dominated
hypervolume that is only dominated by one vector and
not by the other.

For both indicators, negative values mean that the first
individual of the pair dominates the other. In each individual,
its indicator values are charged in a sum of an exponential
function to get a fitness value. For dominance preserving
an indicator must not evaluate a vector with a fitness value
worse than the fitness value of a vector that dominates it.

5) Recombination operator VS other components: A dis-
tinguished feature of our approach is considering on one
hand the role of the recombination operator, and on the
other hand the joint effect all other components of the
MOEAs (e.g. selection, replacement, archiving). By doing
this methodological separation of the MOEAs components
we can focus our analysis on the impact that different
strategies to select, replace, and archive the solutions have in
the effectiveness of probabilistic modeling. All the MOEAs
previously analyzed in this section allow this dissection in
two main components.

One of our assumptions is that some procedures to select
and archive the solutions may be more appropriate for
exploiting the benefits of probabilistic modeling. The other
premises is that success of the combination of probabilistic
modeling and other MOEAs components will depend on the
characteristics of the functions being optimized.

IV. COMPARING CONTINUOUS OPTIMIZERS (COCO)

Fairly comparing optimization algorithms with different
characteristics and capabilities is often a hard and tedious
task. Usually researchers want to compare the algorithms
under different domains of difficulty like non-separability,
multi-modality and ill-conditioning, moreover it is important
to be able to directly compare algorithms with different
populational structures, like steady-state, single-population,
multi-population and decomposition variants.

In order to automate the task of conducting scientifically
sound experimental studies involving numerical optimizers,

the Comparing Continuous Optimizers (COCO) [6] frame-
work was developed. The platform provides benchmark
suites, experimental templates and tools for processing and
visualizing the outcome of one or more optimizers. The
processing of quality indicators is based on runtimes, mea-
sured in number of objective function evaluations to reach
one or several quality indicator target values. Recently, the
platform was rewritten to deal with multi-objective prob-
lems and optimizers, for doing so, a new bi-objective suite
of benchmark problems and new performance assessment
mechanisms were proposed.

The new bi-objective benchmark suite was called “bbob-
biobj”. This suite was created by combining a subset of
the 24 single-objective problems of the original “bbob”
test suite. Combining the 24 original functions without
permutations would result in 300 problems. However, having
so many functions would be impracticable in terms of the
overall running time. Hence, two representative functions
of each of the five domains of difficulty available were
chosen in order not to introduce bias towards any specific
domain. These pairwise combinations resulted in 55 bi-
objective functions of the final “bbob-biobj” suite. These 55
functions are grouped in 15 classes according to the domains
of difficulty of its component subproblems as presented
on Table I. Each of these functions is provided in six
dimensions (2, 3, 5, 10, 20 and 40) and with a large number
of possible instances [14].

One of the most remarkable characteristics of COCO is
its new performance assessment mechanism that considers a
quality indicator based on the hypervolume of the external
archive At instead of the objective value of a single-
objective function. This external archive contains all non-
dominated solutions obtained so far in an algorithm run.
Using an archive is a relevant practice in real-world appli-
cation, moreover using an external archive for performance
assessment allows comparing algorithms with different or
even changing population sizes or structures. The normalized
external archive is evaluated by a quality indicator that
can be either the negative hypervolume, with the nadir as
reference point if the nadir is dominated by at least one point
in the archive. Otherwise the quality of the archive is given
by the distance between the closest point in At to the region
of interest delimited by the nadir point. The target values are
based on a target precision ∆I and a reference hypervolume
indicator value Iref , which is an approximation of the
ICOCOHV indicator value of the Pareto front [14]. The results
of the performance assessment are presented as empirical
distribution functions, where the proportion of problems
solved within a specified budged (in x-axis) is displayed.

V. EXPERIMENTS

In this section we evaluate the different variants of MO-
UMDAc on the COCO framework. First, we present a brief
description of the implementation and parameters used by



Table I
CLASSES OF FUNCTIONS INCLUDED IN THE COCO BENCHMARK

Class Functions Domain F1 Domain F2

1 f1,f2,f11 separable separable
2 f3,f4,f12,f13 separable moderate
3 f5,f6,f14,f15 separable ill-conditioned
4 f7,f8,f16,f17 separable multi-modal
5 f9,f10,18,f19 separable weakly-structured
6 f20,f21,f28 moderate moderate
7 f22,f23,f29,f30 moderate ill-conditioned
8 f24,f25,f31,f32 moderate multi-modal
9 f26,f27,f33,f34 moderate weakly-structured

10 f35,f36,f41 ill-conditioned ill-conditioned
11 f37,f38,f42,f43 ill-conditioned multi-modal
12 f39,f40,f44,f45 ill-conditioned weakly-structured
13 f46,f47,f50 multi-modal multi-modal
14 f48,f49,f51,f52 multi-modal weakly-structured
15 f53,f54,f55 weakly-structured weakly-structured

the algorithm. Then, a comparison between the MO-UMDAc
variants and the baseline algorithms that incorporate SBX
is presented. Finally, we present a detailed investigation
of MO-UMDAc for the different classes of bi-objective
functions described in the previous section.
A. Implementation and parameters of the algorithms

All the algorithms were implemented using the PISA
framework [15] which is a platform and programming
language independent framework for search algorithms. It is
mainly focused on multi-objective optimization algorithms.
It is organized in two major modules: the variator and the
selector. These two modules will communicate with each
other through text files containing common parameters. The
parameters used by the different MO-UMDAc variants were.
• NSGAII and SPEA2: Binary-tournament
• IBEA: indicator = Hypervolume; kappa = 0.05; ρ = 1.1
The common parameters used for all standard MOEAs

used in this paper are: Mutation rate: 1 %, Crossover
rate: 100, and Distribution index (eta mutation and
eta recombination): 20. It is worth noting that the imple-
mentation of MO-UMDAc does not comprise the application
of a mutation step. All the algorithms were allowed to run
for 10000 function evaluations. The number of generations
was set to 200 and the population size was 50. Results were
post-processed using the COCO post-processing capabilities.

B. Comparison of traditional MOEAs vs MO-UMDAc
Figure 1 shows a comparison between traditional MOEAs

and MO-UMDAc variants. The figure represents the number
of functions (out of 55) for which the MOEAs achieved the
required level of precision in the best solution found. The
results shown correspond to the problem with the smallest
dimensionality in the space of decision variables (2D).

An analysis of Figure 1 reveals that for all functions
all algorithms are able to find the first level of precision.
However, as the level of precision is increased, the success
rate significantly decreases. From the second level of preci-
sion is evident that all the MO-UMDAc variants outperform

the results of traditional MOEAs with SBX. Therefore,
to investigate the influence that the different classes of
difficulty produce we will concentrate our analysis on the
MOEAs that use probabilistic modeling. Figure 1 also shows
that probabilistic modeling has a different effect according
to the strategy used to select and replace the solutions.
NSGAIIu is clearly the best algorithm and FEMO are the
worst for all levels of precisions.
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Figure 1. Comparison between traditional MOEAs and MO-UMDAc

variants. Number of functions for which the MOEAs achieved the required
level of precision in the best solution found.

C. Analysis of the influence per problem class
In the following step we investigate whether the impact of

using the Gaussian univariate model with different selection
strategies depends on the difficulty of the functions. We
grouped the results of the algorithms for the 55 functions
according to the 15 classes of functions described in Table I.
Then, we determined whether some function classes were
more difficult to solve than others.
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Figure 2. Number of times the MO-UMDAc variants find the optimum (all
levels of precisions are considered) for each of the 15 classes of functions
described in Table I. Dimension of the problem 2D.

Figure 2 and Figure 3 show the number of times that
the MO-UMDAc variants found the optimum (all levels
of precision are considered) for each of the 15 classes
of functions described in Table I. Results are shown for
problems of dimension 2D (Figure 2) and 3D (Figure 3).
The X axis has been sorted from the problem classes with
highest success rate (considering all the algorithms together)
to the class of problems with smallest success rates.
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Figure 3. Number of times the MO-UMDAc variants find the optimum (all
levels of precisions are considered) for each of the 15 classes of functions
described in Table I. Dimension of the problem 3D.

It can be seen in Figures 2 and 3 that three easiest function
classes (1, 2, 6) all contain separable functions. Four of the
five most difficult functions (8, 11, 12, 13, 14) contain a
multi-modal domain. The only class of functions containing
a multi-modal domain that is not among the most difficult is
class separate-multimodal, suggesting that having a separate
domain can considerably ease the MOP for MO-UMDA.

While the explicit factorization made by MO-UMDAc
makes reasonable that separate functions will be easier to
optimize, finding that multi-modality is the most influential
factor in the deterioration of algorithm behavior, it is an
interesting fact, given that the other criteria of difficulty are
also now to be challenging.

Two other important findings can be extracted from
Figure 2 and Figure 3. The first is that while separable
and multi-modal functions have a similar impact in all
the MO-UMDAc variants, the impact of the functions is
not always the same on the algorithms. For example, for
dimension 2D, SPEAIIu outperforms IBEAu in function
class 4 (separable - multi-modal). However, in function class
3 (separable - moderate), it is algorithm IBEAu the one
that outperforms SPEAIIu. Our second finding is that one
algorithm can have a good behavior for a given number
of decision variables and degrade its performance when the
number of variables increases. This happens to NSGAIIu,
whose behavior deteriorates for 3D.

To analyze the scalability of the algorithm we inspect how
the performance of the algorithms changes for the other
dimensions considered in the experiments. Due to space
restrictions, we present the results only for NSGAIIu. These
results are shown in Figure 4 (for all the functions) and, in
Figure 5, for the group of separable-separable functions. As
expected, the success rate of the algorithm deteriorates with
the increase in the dimensions. However, this deterioration
is smaller for the class of separable functions, for which the
trend evidenced for 2D and 3D is kept.

As a final step in the investigation of the algorithms, we
studied the variability of the algorithm behaviors within the
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easiest and hardest classes of problems. What we want to
determine is whether the good (respectively poor) perfor-
mance for a given class of problems is due to a single
function in each class, or all the functions within a class
produce a similar impact in the behavior of the algorithm.
Figure 6 and Figure 7 show this variability for the classes
separable-separable and multimodal-multimodal. While in
the first class of functions there is some variability, in the
second class the algorithm fails to reach a high precision in
a similar way for the three functions included in the class.

VI. CONCLUSIONS

In this paper we have conducted for the first time an
analysis of the effect that different selection and replacement
strategies have in the behavior of MOEAs using probabilistic
modeling. We have focused on UMDAc, a simple EDA that
uses univariate Gaussian factorizations. Our experimental
results have shown that even this simple algorithm is able
to outperform traditional MOEAs based on crossover.

We have also addressed the relevant question of determin-
ing whether and to which extent different characteristics of
the functions influence the behavior of MOEAs. Our exper-
imental results show that separable functions are the easiest,
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and multimodal functions are the hardest for all the MOEAs
analyzed. However, the choice of the selection method can
provoke probabilistic modeling be more effective for some
particular classes of functions. This effect seems to be
stronger when considering the selection mechanisms used
by SPEAIIu and IBEAu. Another issue that should be taken
into account is that the ranking of the algorithms can change
with the dimension of the problem considered.
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