
Object-Oriented Reinforcement Learning in
Cooperative Multiagent Domains

Felipe Leno da Silva, Ruben Glatt, and Anna Helena Reali Costa*
Escola Politécnica da Universidade de São Paulo, Brazil

{f.leno,ruben.glatt,anna.reali}@usp.br

Abstract—Although Reinforcement Learning methods have
successfully been applied to increasingly large problems, scal-
ability remains a central issue. While Object-Oriented Markov
Decision Processes (OO-MDP) are used to exploit regularities in
a domain, Multiagent System (MAS) methods are used to divide
workload amongst multiple agents. In this work we propose
a novel combination of OO-MDP and MAS, called Multiagent
Object-Oriented Markov Decision Process (MOO-MDP), so as to
accrue the benefits of both strategies and be able to better address
scalability issues. We present an algorithm to solve deterministic
cooperative MOO-MDPs, and prove that it learns optimal policies
while reducing the learning space by exploiting state abstractions.
We experimentally compare our results with earlier approaches
and show advantages with regard to discounted cumulative
reward, number of steps to fulfill the task, and Q-table size.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is an extensively used
technique for autonomous agents with the ability to learn
through experimentation. RL successes range from au-
tonomous flight control [2] to video game playing [3]. As
domains become increasingly complex, scalability is gaining
more importance for RL methods.

The scalability of RL can be enhanced by relational tech-
niques such as Relational MDP (RMDP) [4] and Object-
Oriented MDP (OO-MDP) [5]. The former model relies on
predicates handcrafted by the designer so as to simplify learn-
ing, while the latter defines its state space over a set of objects
within the environment and its attribute values. OO-MDP is
based on observable object features (like position, for instance)
that can be specified naturally and intuitively, requiring less
domain knowledge than RMDP’s propositional functions [5].
OO-MDP has drawn significant attention recently [6]–[8].

Another approach to cope with large state-action spaces is
to treat RL domains as Multiagent Systems (MAS), which
solve tasks in a divide and conquer manner [9]. Multiagent
Reinforcement Learning (MARL) solves MAS; however, RL
techniques are not easily-portable to MAS, because new
challenges arise from the parallel actuation of several agents:
The environment becomes non-stationary as the state transition
is now dependent on the joint action of all agents, rather than
a single action. Many MARL algorithms assume a centralized
controller that designates actions for all agents [10]. Such a
controller is infeasible for most domains, and a distributed

*We are grateful for the support from CAPES, CNPq (grant 311608/2014-
0), and São Paulo Research Foundation (FAPESP), grant 2015/16310-4.

approach is usually more desirable [11]. Note that MARL
also benefits from techniques that exploit regularities in the
domain, as scalability is again a central issue [10].

While relational approaches have benefited multiagent do-
mains in previous work [12], OO-MDP has not been applied
in MARL so far. To the best of our knowledge, up to now
the only effort toward extending OO-MDP to MAS appears
in BURLAP [13], a library for the development of planning
and learning algorithms based on OO-MDP. However, there
is no formal OO-MDP framework for MAS nor distributed
solutions based on OO-MDP for a generic number of agents.

Inspired by the insight that each agent in a MAS can
be seen as an object, we extend OO-MDP for MAS, defin-
ing the Multiagent Object-Oriented MDP (MOO-MDP). We
also present a model-free algorithm based on Distributed Q-
Learning [14], hereafter called Distributed Object-Oriented Q-
Learning (DOO-Q), that can solve deterministic distributed
MOO-MDPs in cooperative domains in which all agents try
to maximize the same reward function [15]. DOO-Q reasons
over abstract states, which help to accelerate learning. We also
show that, under certain constraints, DOO-Q does not need to
consider all the concrete state space and still learns optimal
policies. Thus, in summary, this work answers the following
questions: (i) How to describe a MARL domain with multiple
autonomous agents in an object-oriented manner, and (ii) How
to learn, in a distributed manner, an optimal joint policy in
deterministic cooperative MOO-MDPs.

The remainder of this article is organized as follows: In
Section II we define all relevant concepts for our proposal.
In Section III we introduce the MOO-MDP formalism and in
Section IV we present an algorithm to learn an optimal policy
in deterministic cooperative MOO-MDPs. The experimental
evaluation is presented in Section V and results are discussed
in Section VI. Finally, we conclude our article and point
toward further works in Section VII.

II. MDPS AND THEIR EXTENSIONS

An MDP is described by the tuple 〈S,A, T,R〉, where S is
the set of environment states, A is the set of actions available
to an agent, T is the transition function, and R is the reward
function. At each decision step, the agent observes the state s
and chooses an action a (among the applicable ones in s). Then
the next state is defined by T . The agent must learn a policy π
that maps the best action for each possible state. The solution
of an MDP is an optimal policy π∗, a function that chooses

an action maximizing future rewards at every state. In this
work we are interested in learning problems (i.e., T and R are
unknown to the agent) that can be solved through interactions
with the environment using the Q-Learning algorithm. Q-
Learning iteratively learns a Q-table, i.e., a function that maps
every combination of state and action to an estimate of the
long-term reward starting from the current state-action pair:
Q : S × A → R. Q-Learning eventually converges to the
true Q function: Q∗(s, a) = E

[∑∞
i=0 γ

iri
]
, where γ is the

discount rate and ri is the reward received after i steps from
using action a on state s. Q∗ can be used to define an optimal
policy as: π∗(s) = arg maxaQ

∗(s, a). The standard MDP
takes into account only one agent; even though an MDP can
be used to model a MAS problem by ignoring all other agents,
some kind of coordination is needed in most domains [11].

A Multiagent MDP (MAMDP) [14], also related to Stochas-
tic Games [10], can describe a MAS where agents are aware
of each other. In an MAMDP, the state and action sets are
defined as the cartesian product of local states and actions for
all agents, and the transition function now depends on the joint
action rather than one single individual action. Distributed Q-
Learning [14] can be used to learn an optimal joint policy
for deterministic cooperative scenarios with a small computing
time per step. Distributed Q-Learning learns without observing
actions performed by other agents and stores only Q-values for
the best possible joint action.

OO-MDP is another MDP extension proposed with the
promise to offer generalization opportunities [16]. In order
to better explain the OO-MDP concepts, we firstly present
the Goldmine domain to provide examples for theoretical
definitions. Figure 1 illustrates the Goldmine domain. There
is a certain number of miners, which aim to collect all gold
pieces spread in the environment. There are also impassable
walls that limit miner movements. At each decision step, all
miners may move or collect gold pieces that are close enough.
All agents must work collaboratively and the task is completed
when all gold pieces in the environment are collected.

An OO-MDP consists of a tuple 〈C,O,A,T, D,R〉 .
C = {C1, . . . , Cc} is the set of classes, where each
class Ci is composed of a set of attributes denoted as

(a)

Object id Attributes

miner1 x = 0, y = 1
miner2 x = 1, y = 3
miner3 x = 4, y = 1
gold1 x = 1, y = 0

...
gold6 x = 4, y = 2
wall1 x = 1, y = 1,

pos = South
...

wall24 x = 4, y = 4,
pos = East

(b)

Fig. 1. The Goldmine domain. Miners aim to gather all gold pieces in the
environment. Thick walls are impassable (adapted from [16]). (a) Graphical
representation. (b) Object representation.

Att(Ci) = {Ci.b1, . . . , Ci.bb}, and each attribute bj has a
domain Dom(Ci.bj), which specifies the set of values this
attribute can assume. The object-oriented representation of the
Goldmine domain has three classes: Miner, Gold, and Wall.
They all have attributes x and y, and walls have an additional
pos (position) attribute to indicate the position of the wall in
respect to the compass direction. Hence, the set of classes and
attributes must be enough to describe all types of objects in
the environment and their relevant features.
O = {o1, . . . , oo} is the set of objects that exist in a

particular environment, where each object is an instance of
one class: oi ∈ Cj , C(oi) = Cj and, for each decision
step, each object assumes a state given by the current value
of all attributes. It may be also important to include an
object identification. For example, in the Gridworld domain,
miners may be identified by a “name”, which is used to
define the miner that will be moved towards a gold piece.
Thus, the object state is defined by the Cartesian product:
oi.state =

(∏
b∈Att(C(oi))

oi.b
)
× oi.id, where oi.id is the

object identification. The state of the underlying MDP is the
union of states of all objects: s =

⋃
o∈O o.state. Figure 1b

illustrates an object-oriented state, where all objects in the
environment are described by their attribute values.

The set A consists of actions that may or may not be
parameterized. Actions that are parameterized are defined at
the class level (i.e., each action affects any object of that class
in the same way), thus, parameterized actions are abstract and
need to be grounded before applied. T is a set of terms, which
are boolean functions representing relations between objects
t : Ci × · · · × Cj → Boolean, t ∈ T. D is a set of rules
d, defined as tuples of 〈condition, effect , prob〉. A condition
is a conjunction of terms of T and an effect is an operation
that changes with probability prob the value of attributes in
an object f : Dom(Ci.bj) → Dom(Ci.bj). Finally, R is a
reward function equivalent to the standard MDP one. As we
are interested in learning problems, the agent does not know T ,
D, and R, and has to learn how to actuate through interactions
in the environment.

The transition dynamics in an OO-MDP is interpreted as
follows. First, at each step k, the agent observes the current
state sk and applies an action ak. Second, all terms are
evaluated to be true or false at that step. And third, all
rules associated to ak that had a matched condition trigger
an effect that changes attribute values. After all effects have
been processed, the change in attribute values results in a state
transition, and this procedure can be repeated.

Note that MAMDP and OO-MDP use different approaches
to deal with some specific scalability issues and in the fol-
lowing section we propose a solution which combines both
methods to benefit from their advantages.

III. MULTIAGENT OBJECT-ORIENTED REPRESENTATION

Here, we present a formal definition for an MOO-MDP, an
extension of OO-MDP to MAS.

The main differences between OO-MDPs and MOO-MDPs
are that in the latter: (i) the environment is simultaneously

affected by multiple agents, which means that the state tran-
sition now depends on joint actions rather than individual
agent actions; (ii) each agent may have a slightly different
observation of the world, resulting in similar but possibly
different local states. Also, each agent has its own reward
function, which means that agents can have different goals.
We focus on cooperative domains here, however MOO-MDP
is a general model that can be used for both cooperative and
competitive MAS (or a mix of those).

An MOO-MDP is described by the tuple:〈
C,O,U,T, D,RM

〉
. C is the set of classes and m is the

number of agents. We define Ag = {Z1, . . . , Zm}, Ag ⊆ C
as the set of Agent Classes, i.e., each object of any class
Zi ∈ Ag is an agent able to observe the environment and
perform autonomous actions. Γ ⊆ C is the set of abstracted
classes. Objects of these classes cannot be differentiated
among themselves except by their attribute values, thus each
object assumes an abstract state: o.state =

∏
b∈Att(C(o)) o.b.

O is the set of objects that is divided as O = E ∪G, where
E is the set of environment objects (not related to agents),
∀e ∈ E : C(e) 6∈ Ag, and G is the set of agent objects,
∀z ∈ G : C(z) ∈ Ag. The current concrete state now is a
composition of the state of environment and agent objects: s =⋃

o∈O o.state =
(⋃

e∈E e.state
)
∪
(⋃

z∈G z.state
)
, i.e., we

assume full observability. An abstract state s̃ is defined accord-
ing to: s̃ =

(⋃
o∈O,C(o)∈Γ o.state

)
∪
(⋃

o∈O,C(o)6∈Γ o.state
)

,
where s̃ is a set of concrete states (s̃ ⊆ S). The function κ
defines the abstract state for an agent z given a concrete state,
s̃z = κ(s, z), in which all objects of classes Ci ∈ Γ have
their id suppressed. Note that the definition of abstract states
enables knowledge generalization. For example, in the Gold-
mine domain we set the Gold class as abstracted (Gold ∈ Γ),
so that when an agent first collects a gold piece, it will learn
that this action results in a positive reward and, as Gold is
abstracted, the agent generalizes this knowledge and reasons
that any collected gold piece results in a positive reward.
U is the set of joint actions for all agents, in which each

agent has its own individual action set, U = A1 × · · · × Am.
Individual actions can be parameterized or not, thus MOO-
MDPs also allow action space abstraction. Action sets do not
need to be equal, hence MOO-MDPs can be applied in both
homogeneous and heterogeneous MAS. T and D have the
same definition as in OO-MDPs, and RM = {R1, . . . , Rm} is
the set of reward functions for all agents, which now returns
reward signals taking joint actions into account, rather than
individual actions. In learning problems, T, D, RM , and U
are unknown to the agent (it knows Az though).

In each step k, all agents observe their abstract state s̃zk and
apply an action azk. All terms are evaluated according to sk
(defined from Ok) and the joint action uk triggers all effects
related to matched conditions in the rules d ∈ D. Finally,
effects change object attributes, causing a state transition, and
the agent receives a reward rzk.

In the next section we present an algorithm to solve deter-
ministic cooperative MOO-MDPs with homogeneous agents.

IV. LEARNING IN COOPERATIVE MOO-MDPS

We are interested in a solution for Deterministic Distributed
Cooperative MOO-MDPs, a specific class of the general
MOO-MDP framework presented in Section III. The reward
function in cooperative MAS is the same for all agents,
R1 = · · · = Rm. We assume that there is no central controller,
and each agent takes actions unaware of other agent actions.
We here present a model-free algorithm based on Distributed
Q-Learning [14] to solve such problems.

The proposed algorithm, hereafter called Distributed
Object-Oriented Q-Learning (DOO-Q) learns a joint policy
in a distributed and generalized manner, in which each agent
z stores a local Q-table (Qz) containing abstract states (s̃z)
and its own local actions (az). An agent z can find a suitable
policy for the joint actuation, even when unaware of other
agent actions, through iteratively updating its Q-table over
abstract states and concrete actions:

Qz
k+1(s̃zk, a

z
k)← max{Qz

k(s̃zk, a
z
k), rk + γ max

a∈Az

Qz
k(s̃zk+1, a)}.

(1)
However, the greedy policy applied to local Q-tables is

not guaranteed to result in an optimal joint policy, because
agents do not take into account each other actions and miss-
coordination issues may arise. We use the following policy
update in order to provide a coordination mechanism:

πz
k+1(s̃z) ←

{
πz
k(s̃z) if max

a∈Az

Qz
k(s̃z, a) = max

a∈Az

Qz
k+1(s̃z, a)

azk otherwise
.

(2)
DOO-Q solves MOO-MDPs allying distributed Q-table update
of Equation (1) with policy update of Equation (2), and we
can prove that DOO-Q learns an optimal joint policy under
certain restrictions by:

Proposition 1. Let πz be a decentralized policy learned by
agent z on a cooperative MOO-MDP using Equation (2),
and m = |G|. Assume that Equation (1) is used for Q-value
updates. Let s̃zk = κ(sk, z), then for every state s ∈ S, πz

is greedy with respect to the corresponding joint Q-table at
convergence time even when each agent’s policy is defined
over local Q-tables, i.e. :

∀s ∈ S : [π1(s̃1) . . . πm(s̃m)]T = arg max
u∈U

Q∗(s,u), (3)

where Q∗ is the joint Q-table at convergence time. We assume
that:
1) The concrete state transition and reward functions are

deterministic (i.e., for a given state sk and joint action uk

only one next state sk+1 and reward rk can be achieved).
2) For all s ∈ S,u ∈ U and az ∈ Az : Q0(s,u) =

Qz
0(κ(s, z), az) = 0, and r(s,u) ≥ 0.

3) The MOO-MDP is cooperative (i.e., all agents receive the
same reward rk at every step k).

4) For all s ∈ S, z ∈ G, and u ∈ U , κ(s, z) returns only
one abstract state s̃zk = κ(s, z). Also, the same reward rk

and next state s̃zk+1 are observed when applying u in any
concrete state covered by s̃zk.

Proof: For all agents z ∈ G, let πz
0 be arbitrarily

initialized. Because Equation (1) is used for Q-value updates,
Qz

k is a monotonically increasing function; that is, ∀s ∈ S, a ∈
Az : Qz

k(s, a) ≤ Qz
k+1(s, a). Also, according to Equation (2),

the policy is only updated in step k, when:

∃!a ∈ Az : Qz
k(s̃zk, a) < Qz

k+1(s̃zk, a).

Then, in this case, we know that: πz
k+1(s̃zk) ← azk. As we

are dealing with cooperative MOO-MDPs, this holds for all
agents in k, corresponding to a joint policy update as follows:

πk+1(sk) =

π
1
k+1(s̃1

k)
...

πm
k+1(s̃mk)

 =

arg max

a1∈A1

Q1
k+1(s̃1

k, a
1)

...
arg max
am∈Am

Qm
k+1(s̃mk , a

m)

(4)

which means that, at convergence time, the resulting joint
policy corresponds to

∀s ∈ S : π∗(s) =

arg max

a1∈A1

Q1∗(s̃1, a1)

...
arg max
am∈Am

Qm∗(s̃m, am)

 . (5)

Assumptions 1 and 3 ensure that, for any step k, the
same experience 〈sk,uk, sk+1, rk〉 is valid for all agents,
which together with Assumption 4 ensure that each agent
always observes the same s̃zk whenever sk is visited. Thus, the
following Q-value update is performed either in distributed or
in joint control, respectively:

Qz
k+1(s̃zk, a

z
k)← max{Qz

k(s̃zk, a
z
k), rk + γ max

a∈Az

Qz
k(s̃zk+1, a)},

Qk+1(sk,uk)← max{Qk(sk,uk), rk + γ max
u∈U

Qk(sk+1,u)}.

For any experience, this update can lead to two possibilities:
1) Qz

k(s̃zk, a
z
k) < rk + γ maxa∈Az

Qz
k(s̃zk+1, a): Because of

Assumption 2, Qz and Q are initially equal, hence both
Qz

k(s̃zk, a) and Qk(s,u) are updated, thus after the update:
Qz

k+1(s̃zk, a
z
k) ≥ Qk+1(sk,uk).

2) Otherwise: No Q-value is updated on the distributed
Q-table. As updates are done following the same pro-
cedure at any k: Qk(sk,uk) ≤ Qz

k(s̃zk, a
z
k) and

maxu∈U,s∈s̃zk+1
Qk(s,u) ≤ maxa∈Az Q

z
k(s̃zk+1, a). This

means that, after the update in k, the following relation
is valid: Qk+1(sk,uk) ≤ Qz

k+1(s̃zk, a
z
k).

Since for both situations Qk+1(sk,uk) and Qz
k+1(s̃zk, a

z
k)

are the only Q-table entries that may be updated and the
latter is always greater or equal than the former, the following
Equation holds for any k, s ∈ S, and az ∈ Az:

Qz
k(s̃zk, a

z) ≥ max
u∈U,uz=az,s∈s̃zk

Qk(s,u), (6)

where Qz
k is the local Q-table of agent z at step k, Qk

is the joint Q-table for all agents, agent z chose action az

(uz = az), and s ∈ s̃zk. Assumptions 1, 3, and 4 also ensure
that at convergence time, all trajectories starting from a given
concrete state s are already known, resulting in:

Qz∗(κ(s, z), az) = max
u∈U,uz=az

Q∗(s, u), (7)

where Qz∗ and Q∗ are, respectively, the distributed Q-table of
agent z and the joint Q-table at convergence time.

Combining Equations (7) and (5) results in:

∀s ∈ S : π∗(s) =

arg max

a1∈A1

max
u∈U,u1=a1

Q∗(s, u)

...
arg max

am∈Am

max
u∈U,um=am

Q∗(s, u)

 . (8)

Due to the update rule in Equation (2) and the cooperative
nature of the MOO-MDP, we can say that agents coordinate
by breaking ties in arg maxa∈Ai

Qi
k+1(s̃i, a) according to the

order in which experiences occurred, which means that agents
coordinate even when multiple optimal joint policies exist.
Thus Equation (8) is equivalent to

∀s ∈ S : π∗(s) = arg max
u∈U

Q∗(s, u). (9)

Hence, a joint policy implied by decentralized policies
updated as in Equation (2) eventually converges to the optimal
joint policy, provided that all states are infinitely visited and
all applicable actions have a non-zero probability of being
executed by the exploration strategy.

DOO-Q is fully described in Algorithm 1. At first, local Q-
tables are initialized with zero values according to Assumption
2 of Proposition 1. Then, each agent observes its current
abstract state s̃zk according to the state of all objects (as
described in Section III) and chooses an action azk according to
its exploration strategy ExpStr. Any function that has a non-
zero probability of executing all applicable actions can be used
as ExpStr (as required by Proposition 1), e.g., the ε-greedy
strategy. After all agents have applied their actions, each agent
observes its next state and reward, and finally updates its Q-
table and policy πz

k, ending the current learning step. Note
that the agent’s observation of the current state over the set of
objects enables state generalization; i.e., an agent may see all
objects of the same class as equivalent, and only differentiate
them by their attribute values.

V. EXPERIMENTAL EVALUATION

We evaluate our proposal in a slightly modified version of
the Goldmine [16] domain. In this domain, at each decision
step, all miners may move one position to North, South, East
or West and, whenever a miner occupies the same cell as a
gold piece, the action GetGold can be used to collect the gold
piece. Episodes end when all gold pieces are collected.

As described in Section II, the Goldmine domain is
described by three classes: Miner, Gold, and Wall, where

Algorithm 1 Learning for a DOO-Q agent z
Require: exploration strategy ExpStr, discount rate γ, ab-

straction function κ, state space S, and action space Az .
1: Qz

0(κ(s, z), a)← 0,∀s ∈ S, a ∈ Az .
2: Initiate πz

0 as a greedy policy.
3: Observe current abstract state s̃z0.
4: for Each learning step k ≥ 0 do
5: Apply action azk = ExpStr(s̃zk, π

z
k)

6: Observe reward rk and new state s̃zk+1.
7: Update Qz

k(s̃zk, a
z
k) (Equation 1).

8: Update policy πz
k(s̃zk) (Equation 2).

9: s̃zk ← s̃zk+1.
10: end for

miner objects are agents, i.e. C = {Miner,Gold,Wall},
Ag = {Miner}, Att(Miner) = Att(Gold) =
{x, y}, Att(Wall) = {x, y, pos}, and Az =
{North(z), South(z), East(z),West(z), GetGold(z)}. The
following terms are defined: touchN (m,w), touchS(m,w),
touchW (m,w), touchE(m,w), and on(m, g), which define
whether a wall is on North, South, East or West of a miner
cell, or if a miner is occupying the same cell as a gold
piece. The actions, conditions and deterministic effects are
defined in Table I. Note that, if a miner tries to move towards
a wall, the action condition is not fulfilled and the miner
does not move from its current position. For a given triple
〈sk,uk, sk+1〉, we define the reward function as follows:

r(sk,uk) = gold× ngold × γ(2nminer+1.5nwall), (10)

where gold is the value for each gold collection, γ is the
same discount rate as in Equation (1), ngold is the number of
collected gold pieces when applying the joint action uk, nwall

is the number of miners colliding with walls in k, nminer is
the number of miner pairs occupying the same grid cell in
sk+1, and gold = +100. This reward function was designed
to penalize collisions while avoiding negative rewards, which
would invalidate Assumption 2 of Proposition 1.

In our experiment, we randomly generated 70 initial states
in a 5 × 5 grid with 3 miners and 6 gold pieces (Figure
1 is an example of such states) and used them to compare
the performance achieved by each of the algorithms. The
random function was designed in a way that every algorithm
experiences the same initial states in the same order, and the
next initial state is defined by swapping the position of objects
of the same class after each episode. For each state, algorithms

TABLE I
Goldmine DOMAIN DYNAMICS. IF THE CONDITION FOR THE APPLIED
ACTION IS NOT TRUE IN THE CURRENT STATE, NO EFFECT OCCURS.

Action Condition Effects
North(Miner m) ¬touchN (m,Wall) m.y ← m.y + 1
South(Miner m) ¬touchS(m,Wall) m.y ← m.y − 1
East(Miner m) ¬touchE(m,Wall) m.x← m.x+ 1
West(Miner m) ¬touchW (m,Wall) m.x← m.x− 1

GetGold(Miner m) on(Miner m,Gold g) g.x← ∅, g.y ← ∅

explore using an exploration strategy and, for each interval
of 100 episodes, a single episode using the greedy policy is
assessed to extract the number of steps required to reach a
terminal state and the received accumulated discounted reward.
The following algorithms were compared:
1) Single-agent Q-Learning (SAQL): This algorithm follows

the original Goldmine modeling, where an external agent
sees each miner as a simple environment object (and not
as an autonomous agent). A single miner can be moved at
each step and all decisions are made by the external agent,
which means miners do not perform actions by themselves.

2) Multiagent Q-Learning (MAQL): Each miner is an au-
tonomous agent for this algorithm. Agents cannot commu-
nicate, but they are able to observe each others actions in all
steps. Thus, each agent stores a Q-table that has an entry
for all states and joint actions, and every agent actuates
believing that all other agents will choose the individual
action which has the maximum Q-value.

3) DOO-Q: In our proposal all miners are autonomous agents.
4) Distributed Q-Learning (DQL): This algorithm is imple-

mented with a factored state description [14].
For all algorithms, we used γ = 0.9 and an ε-greedy

exploration strategy with ε = 0.1. Also, α = 0.2 for SAQL
and MAQL. A time limit was set for the experiment, in which
an algorithm is interrupted if the time limit is exceeded.The
experiment was implemented in BURLAP [13]. Our imple-
mentations can be downloaded at https://github.com/ f-leno/
DOO-Q BRACIS2016.

VI. RESULTS AND DISCUSSION

The algorithms are compared based on Q-table size and
learning speed. The number of Q-table entries for an algorithm
depends on the size of the state and action spaces, |Q| =
|S|×|A|. Table II presents |S| and |A| for all algorithms in the
Goldmine domain. Hence, for a 5× 5 environment with three
miners, six gold pieces, and fixed walls (as in our experiment),
the number of Q-table entries per agent for each algorithm is
roughly (i) SAQL: 1.7 × 1011, (ii) MAQL: 7.4 × 1011, (iii)
DOO-Q 2.9× 1010, (iv) DQL 2.4× 1013, which means that
DOO-Q requires less Q-table entries than the other algorithms.

Figures 2 and 3 depict the results of our experiment, in
which the shaded area represents the 95% confidence interval
observed in 70 repetitions. Figure 2 shows that DOO-Q learns

TABLE II
STATE AND ACTION SPACES FOR EACH ALGORITHM IN OUR VERSION OF

Goldmine. m IS THE NUMBER OF MINERS, p IS THE NUMBER OF GOLD
PIECES, q IS THE NUMBER OF INDIVIDUAL ACTIONS, AND w IS THE

NUMBER OF POSSIBLE CELLS INSIDE THE GRID.

|S| |A|
SAQL wm (p+w)!

p!w!
q m

MAQL w
(m+w−2)!

(m−1)!(w−1)!
(p+w)!
p!w!

qm

DOOQ w
(m+w−2)!

(m−1)!(w−1)!
(p+w)!
p!w!

q

DQL wm(w + 1)p q

Fig. 2. Observed discounted cumulative reward in the Goldmine domain.

Fig. 3. Number of steps to complete one episode in the Goldmine domain.

an effective policy much faster and achieves higher rewards
than all other algorithms since the beginning, maintaining
better results until the end of the experiment. MAQL started
with a performance comparable to SAQL, however the high
memory usage made MAQL slower to process and the time
limit was exceeded after only 700 learning episodes. When
compared to the object-oriented algorithms, DQL presented
a very slow learning process until the end of training. As
the only difference between DOO-Q and DQL is the object-
oriented representation, the results clearly reflect the advantage
of MOO-MDPs.

Figure 3 shows that the MAS approaches (DOO-Q, MAQL
and DQL) completed the task with less steps in the beginning
of the training. Then, DOO-Q learned how to complete the
task with very few steps after 1300 learning episodes and
SAQL surpassed DQL after around 2000 episodes, because
DQL presented a very slow learning. MAQL would probably
achieve better results than SAQL in steps for task completion
but it was unable to scale to this problem size. The results
in this domain show that the abstraction provided by MOO-
MDPs can greatly accelerate the learning speed, as DOO-Q
achieved much better results than DQL. Also, compared to
SAQL, MAS algorithms learned faster to reduce the number
of steps needed to complete the task, which indicates that
dividing the workload helps to solve some problems.

In summary, our experiment shows that DOO-Q achieves
the best performance among the evaluated algorithms by using

the least space for the Q-table, and by learning a good policy
for a higher discounted cumulative reward much faster.

VII. CONCLUSION AND FURTHER WORKS

In this article we introduced a Multiagent Object-Oriented
MDP (MOO-MDP) formalism and presented a model-free al-
gorithm to solve deterministic distributed MOO-MDPs, called
Distributed Object-Oriented Q-Learning (DOO-Q). We also
proved that DOO-Q learns an optimal policy while abstracting
states and storing only local actions in each local Q-table. Our
proposal was experimentally compared with other model-free
algorithms in the Goldmine domain, and DOO-Q achieved
a better performance both in learning speed and memory
requirements. Further works could focus on developing algo-
rithms for stochastic and general-sum MOO-MDPs, in which
DOO-Q is not applicable. MOO-MDPs could also be extended
to Partially Observable domains, which would allow to develop
distributed approaches where agents do not necessarily observe
the whole environment state at each step.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[2] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, “Autonomous inverted helicopter flight via Reinforcement
Learning,” in Experimental Robotics IX. Springer, 2006, pp. 363–372.

[3] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level Control
through Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[4] M. L. Koga, V. F. da Silva, and A. H. R. Costa, “Stochastic Abstract
Policies: Generalizing Knowledge to Improve Reinforcement Learning,”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 77–88, 2015.

[5] C. Diuk, A. Cohen, and M. L. Littman, “An Object-oriented Representa-
tion for Efficient Reinforcement Learning,” in International Conference
on Machine Learning (ICML), 2008, pp. 240–247.

[6] S. Mohan and J. E. Laird, “An Object-Oriented Approach to Reinforce-
ment Learning in an Action Game,” in AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2011, pp. 164–169.

[7] N. Topin, N. Haltmeyer, S. Squire, J. Winder, M. desJardins, and J. Mac-
Glashan, “Portable Option Discovery for Automated Learning Transfer
in Object-Oriented Markov Decision Processes,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2015, pp. 3856–3864.

[8] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman, “Exploring Compact
Reinforcement-learning Representations with Linear Regression,” in
Conference on Uncertainty in Artificial Intelligence (UAI), Montreal,
Canada, 2009, pp. 591–598.

[9] M. J. Wooldridge, An Introduction to MultiAgent Systems (2. ed.).
Wiley, 2009.

[10] L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive Survey
of Multiagent Reinforcement Learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 2,
pp. 156–172, 2008.

[11] M. Tan, “Multi-Agent Reinforcement Learning: Independent versus
Cooperative Agents,” in International Conference on Machine Learning
(ICML), 1993, pp. 330–337.

[12] T. Croonenborghs, K. Tuyls, J. Ramon, and M. Bruynooghe, “Multi-
agent Relational Reinforcement Learning,” in Learning and Adaption in
Multi-Agent Systems, 2005, pp. 192–206.

[13] J. MacGlashan, Brown-UMBC Reinforcement Learning and Planning
(BURLAP), http://burlap.cs.brown.edu/index.html, 2015.

[14] M. Lauer and M. Riedmiller, “An Algorithm for Distributed Reinforce-
ment Learning in Cooperative Multi-Agent Systems,” in International
Conference on Machine Learning (ICML), 2000, pp. 535–542.

[15] L. Panait and S. Luke, “Cooperative Multi-Agent Learning: The State of
the Art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, 2005.

[16] C. Diuk, “An Object-Oriented Representation for Efficient Reinforce-
ment Learning,” Ph.D. dissertation, Rutgers University, 2009.

