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Abstract—Studies with ensemble systems have gained at-
tention recently and, most of them, propose new methods
for the design (generation) of different components in these
systems. In parallel, new contributions of meta-learning have
been presented as an efficient alternative to automatic recom-
mendation of algorithms. In this paper, we apply meta-learning
in the process of recommendation of important parameters
of ensemble systems, which are: architecture and individual
classifiers. The main goal is to provide an efficient way to design
ensemble systems. In order to validate the proposed approach,
an empirical investigation is conducted, recommending three
possible types of ensemble architectures (Bagging, Boosting and
Multi-Boosting) and five possible types of learning algorithms
to compose the ensemble systems (individual classifiers or
components). An initial analysis of the results confirms that
meta-learning can be a promising tool to be used in the
automatic choice of important parameters in ensemble systems.

I. INTRODUCTION

INSTEAD of focusing on the use of individual estimators

(classifiers or regressors) when applying to a particular

problem, the concept of ensemble systems is to provide

independent modules that seek for a decision potentially

more effective than the one produced by any of the members,

when acting separately. In a typical architecture of ensemble,

a new input pattern is presented for all K components. The

individual classifiers provide their outputs and send them to

a combination method, which is responsible for providing

the final output of the system. The outputs are generally

combined using simple voting or weighted vote. Therefore,

ensemble systems can be seen as a two-step decision making

process, in which the first step is related to the decision of

the individual classifiers, while the second step refers to the

decision of the combination method.

In order to obtain acceptable results in terms of accu-

racy/generalization, it is important that all components of an

ensemble system present a certain level of diversity among

themselves. The need for diversity is due to the fact that if

the whole set of components provides the same output, this

will lead to an increase in the computational cost, without

increasing the performance of the ensemble system. One

way to achieve diversity is by training each component with
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different datasets. In this case, the methods for generating

ensembles most used in the literature are: Bagging [1],

Boosting [2] and Multiboosting [3]. These methods, in turn,

make use of techniques for resampling data.

In parallel, new researches have been proposed in the field

of meta-learning. The major contribution of this field is to

exploit knowledge about the learning process, allowing us

to understand and to improve the performance of machine

learning algorithms [4]. For instance, in [5], the authors

presented a meta-learning approach to predict the accuracy of

two algorithms, multi-layer perceptron with backpropagation

and with Levenberg-Marquardt. On the other hand, in [6], the

authors use a hybrid approach with meta-learning and search

algorithms in order to automatically adjust the parameters

of a support vector machine (SVM). In [7], the authors

used meta-learning to build a model to predict a ranking

of performance among the main learning algorithms used in

gene expression tasks.

In the context of ensemble systems, very little effort has

been done to use meta-learning as a recommendation tool

in the automatic design of these systems [8], [9]. In [8], for

instance, it is presented an approach to create customized

model ensembles on demand, inspired by Lazy Learning.

In their approach, called lazy Meta-Learning, an ensemble

system is created and their meta-information are used for

dynamic bias compensation and relevance weighting. It is

important to emphasize that the approach proposed in [8]

does not apply meta-learning on the recommendation level of

configuration parameters for an ensemble system, unlike the

methodology we apply in this paper. In addition, in [9], the

authors combined the idea of meta-learning with ensemble

systems, with the goal to help the design of efficient and

robust ensemble systems. However, they recommended dif-

ferent parameters of an ensemble systems (size and structure)

of the one we recommend in this paper (ensemble architec-

ture and individual classifiers) and they used different meta-

learning methodology (meta-features and meta-learner).

The main aim of this paper is to investigate the use

of meta-learning to select two important parameters in the

design of ensemble systems, which are: the best ensemble

architecture (bagging, boosting or multi-boosting) as well

as the components to compose an ensemble system to be

applied in different classification problems. The main con-

tribution of this investigation is to present an efficient tools

to design ensemble systems using meta-learning, which has

not been proposed in the literature.
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II. ENSEMBLE SYSTEMS

One important issue in the design of ensemble system

is the choice of the individual classifiers. The appropriate

choice of the set of individual classifiers is fundamental to

the overall performance of an ensemble. Depending on its

particular structure, an ensemble can be realised using two

main approaches: heterogeneous and homogeneous. The first

approach combines different types of learning algorithms

as individual classifiers. In contrast, the second approach

combines learning algorithms of the same type.

As already mentioned, diversity plays an important role

in the design of ensembles that are accurate and generalize

well [10]. The ideal situation, in terms of combining clas-

sifiers, would be a set of classifiers that presents uncorre-

lated errors (diversity). Diversity in ensemble systems can

be reached by using different parameter settings, different

classifier training datasets and different classifier types. The

most common way to promote diversity is through the use

of learning strategies, also known as ensemble architectures

or simply architectures, that provide different datasets for

the individual classifiers of an ensemble system. The most

common architectures are:

• Bagging [1]: It is based on the idea of data resampling.

Diversity is promoted in Bagging by using bootstrapped

replicas of the training dataset and each replica is

generated by randomly drawing, with replacement, a

subset of the training data;

• Boosting: This algorithm was proposed originaly by

Schapire [11] and cited by Breiman [12] as Arcing

(adaptive resampling and combining). It is very similar

to Bagging since it also applies a resampling proce-

dure. However, Boosting does not use training datasets

obtained by uniform random resampling, but using a

probability distribution assigned to each pattern of the

training set and it is adaptively adjusted; and

• MultiBoosting: In [13], the authors proposed a combina-

tion of Bagging and Boosting, called Multiple Boosting,

or simply MultiBoosting. The whole training process is

similar to Boosting and the main difference is related

to the definition of the weights, which is randomly

chosen for each pattern of the training set for each sub-

ensemble.

III. META-LEARNING FOR ALGORITHM

RECOMMENDATION

Recently, meta-learning techniques have been emerged as

an efficient alternative for recommendation [14], [15]. It can

be considered as an automatic process of knowledge acqui-

sition that relates the performance of the learning algorithms

with the characteristics of the machine learning problems.

The idea of meta-learning can be applied to individual

learning algorithms or ensemble systems. In the second

case, the performance of the homogeneous ensemble systems

is related to a set of characteristics (meta-features) of the

corresponding machine learning problems. Hence, it acquired

knowledge over the parameters of each configuration of an

ensemble system and this acquired knowledge is used in the

design of of these systems, when a new task is presented.

In a general perspective, the design of an algorithm

(ensemble system) recommendation system is composed of

four phases [16], which are: characterization of the dataset

(meta-features); definition of evaluation metrics; definition

of the recommendation output; and the development of the

recommendation model.

In the first phase, the main aim is to find or develop

features that describe appropriately the problems that have

been solved by the used algorithms, aiming to provide

morphological information that can be applied to the meta-

learner. One of the first studies to define meta-features was

the statlog project [17]. Some of the evaluation features

defined by this project are: number of instances, number

of attributes, the first canonical correlation, kurtosis average

attributes, attribute entropy, signal/noise ratio, among others.

In the second phase, the process of selecting the best

algorithm for the problems in the dataset is performed. In this

case, it is necessary the application of evaluation measures

in order to ensure that the best model has been selected for

a specific problem, taking into account the more satisfactory

performance for the analysed problem. Several evaluation

metrics can be employed to evaluate the used algorithms such

as, predictive accuracy, error rate, precision, F-measure, area

under the ROC curve, computational cost for training/testing

phases, memory necessary, complexity of the induced model

and interpretation of the resulting model, among others. In

this paper, we use the error rate as the main evaluation metric.

The third phase is related to the final result that will be

presented by the recommendation system. In this case, the

authors in [16] suggest three techniques: definition of the

best algorithm, definition of a group of best algorithms or

a ranking of the best algorithms. In this paper, we select

to recommend the best algorithm, since it is the simplest

strategy to be implemented and because it is the most

important output that we desire from a recommendation

system.

Finally, in the fourth phase, the goal is to learn an implicit

mapping between meta-features and classes in the meta-label.

IV. AUTOMATIC CHOICE OF ARCHITECTURE AND

COMPONENTS IN ENSEMBLES

For the proposed recommendation procedure of architec-

ture and individual classifiers of ensemble systems, four

phases are needed. The first one is related to the feature

extraction of the training set. In other words, for a training

set, the characterization of the dataset phase described in

the previous section is performed and the meta-features are

extracted (one dataset for each parameter to be suggested).

In the second phase, however, each training dataset is

tested using a 10-fold cross validation process with Bag-

ging, Boosting and Multiboosting algorithms. The ensemble

systems are composed (individual classifiers) of RBF Neural

Networks (NN), Decision Tree (DT), Support Vector Ma-

chines (SVM), Naïve Bayes (NB) and k-Nearest Neighbour

(k-NN), in homogeneous structures.
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In the third phase, the performance of the ensemble sys-

tems created in the previous phase is evaluated and the meta-

labels are filled, filling all attributes of the meta-datasets.

These meta-datasets are used to train the meta-learners that

are responsible for recommending the architecture (archi-

tecture meta-dataset) and the individual classifiers (classifier

meta-dataset) for the ensemble systems.

In the first meta-dataset, as illustrated in Figure 1, archi-

tecture meta-dataset, the label attribute indicates one of the

learning strategies used in this investigation (1 – Bagging, 2

– Boosting or 3 – Multiboosting). It indicates the architecture

that delivered the best performance. In order to calculate the

performance of each ensemble, the average error rate of the

obtained ensembles when using all individual classifiers is

defined (1 – NN, 2 – DT, 3 – SVM, 4 – NB and 5 – k-NN)

and we select as the best case as the one that delivered the

lowest error rate.

In the second meta-dataset, the label attribute is related

to the best individual classifier to the specific ensemble

architecture. For this meta-dataset, we define two different

approaches for recommending the best individual classifier.

In the first approach, we create three different datasets, one

for Bagging, one for Boosting and one for Multiboosting.

This approach is called approach I and illustrated in Fig-

ure 1(a).

In the second approach, called approach II and illustrated

in Figure 1(b), only one meta-dataset is considered when

recommending the best individual classifier. For this second

approach, all meta-datasets for Bagging, Boosting and Multi-

boosting were pooled into a single meta-dataset (general

components in Figure 1). In this case, one meta-feature is

included, which is related to the best architecture. Therefore,

a recommendation is done taking into consideration the

output of the first step (best architecture).

Fig. 1. Design of meta-datasets.

In the fourth phase, the meta-learners are built using

the meta-datasets created in the previous phase. This phase

was constructed in two different ways (based on the two

approaches described above) with the same goal. In the first

one (approach I), when a new instance is presented, the

corresponding features are extracted and presented to two

meta-learners. The first meta-learner recommends the most

suitable architecture (Bagging, Boosting or Multiboosting)

for this instance. Based on the output of the first meta-dataset,

the second meta-dataset recommends the type of individual

classifier (NN, DT, SVM, NB or k-NN) for the selected

architecture (Bagging, Boosting or Multiboosting).

In the second one (approach II), when a new instance

is presented, the corresponding features are extracted and

presented to the first meta-dataset (architecture), that recom-

mends the most suitable architecture for this problem. Then,

based on the result of this first meta-dataset, the second meta-

dataset is activated. In this second approach,the meta-learner

received the extracted features, along with the recommended

architecture (additional meta-feature), and it recommends the

type of individual classifier to compound the ensemble.

V. EMPIRICAL ASSESSMENT

A prototype to conduct this empirical investigation was

implemented using Java language. It is important to empha-

size that we used some of the resources provided by the

machine learning Weka framework [18]. This framework has

been widely used as basis in the development and validation

of different approaches in machine learning, mainly those

approaches that use ensemble systems [19], [20]. In addition,

for simplicity reasons, we used only homogeneous ensembles

in this investigation. Therefore, we selected three architec-

tures for homogeneous ensembles (Bagging, Boosting and

Multiboosting). For each case, we used learning algotihms

with different classification criteria (NN, DT, SVM, NB, and

k-NN). In this investigation, we use the default parameter

values of Weka package in all these learning algorithms.

In this investigation, we selected 20 classification prob-

lems extracted from UCI repository [21]. Table I describes

the classification problems in terms of number of features,

instances and classes.For each classification problem, we

randomly created 10 new datasets, with resampling. These

new datasets are used, along with the original 20 problems,

in this empirical investigation. In this case, our meta-datasets

contain 200 intances.

Recently, the Metal project (www.metal-kdd.org) has de-

veloped tools to help users to select the most suitable

combination of pre-processing, classification and regression.

In this investigation, we apply these tools to extract meta-

features. The extracted meta-features are described in Table

II.

A 10-fold stratified cross-validation method on the training

dataset has been applied over each classification problem.

In addition, the results are analysed in terms of error rates

presented by each analysed model.

VI. EMPIRICAL RESULTS

Initially, we analyse the results obtained by all the ho-

mogeneous ensembles. Tables III, IV and V present the
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TABLE I
DESCRIPTION OF THE DATASETS USED

ID Dataset Features Instances Classes
1 anneal 38 898 6
2 breast-cancer 30 569 2
3 bupa 6 345 2
4 car 6 1728 4
5 colic 28 368 2
6 credit-a 15 690 2
7 diabetes 8 768 2
8 gaussian3 600 60 3
9 glass 9 214 7
10 haberman 3 306 2
11 heart-c 75 303 2
12 hepatitis 20 155 2
13 ionosphere 34 351 2
14 iris 4 150 3
15 segment 18 2310 7
16 sick 29 3772 2
17 sonar 60 208 2
18 vehicle 18 846 4
19 vote 16 435 2
20 waveform-5000 40 5000 3

TABLE II
META-FEATURES DESCRIPTIONS

Meta-features Average St. Dev. Min. Max.
Num of instances 863.68 1153.57 54.00 4500.00
Num attributes(NA) 49.40 127.66 4.00 601.00
Num of classes 3.20 1.69 2.00 7.00
Num of symbolic att 6.50 8.86 0.00 32.00
Num of numeric att 41.90 129.24 0.00 600.00
Missing values (MV) 388.48 1226.31 0.00 5495.00
MV relative (MVR) 0.02 0.05 0.00 0.23
Lines with MV total 200.88 738.81 0.00 3395.00
Lines with MVR 0.15 0.31 0.00 1.00
Mean absol. skewness 1.29 0.77 0.05 3.38
Mean kurtosis 8.61 8.46 2.70 38.36
NA with outliers 6.29 14.69 0.00 67.00
Entropy of class 1.23 0.56 0.33 2.81
Entropy of att 1.32 0.86 0.34 3.53
Mutual information 0.11 0.095 0.01 0.31
Joint entropy 2.11 0.93 0.66 4.33

error rate of all three architectures, respectively. These tables

illustrate the error rates for all five learning algorithms

used in this analysis. As we have 21 instances (cases) for

each classification problem, the values presented in this

section represent the average values of all 21 cases of each

classification problem.

In a general perspective, it is possible to observe that the

learning algorithm that provided the best performance was

DT (decision tree), achieving the lowest error rate in 27 cases

(out of 60), followed by SVM (13 out of 60 cases), NN (9

out of 60 cases), k-NN (6 out of 60 cases) and NB (5 out of

60 cases).

In analysing the error rates delivered by Bagging (Ta-

ble III), we noticed that in around 40% of the analysed

classification problems, the lowest error rates were obtained

by ensembles composed of stable classifiers, such as SVM,

NB and k-NN. In other words, the best results were obtained

with ensembles that are composed of learning algorithms that

are not suitable to be used in this architecture. In this case,

when designing an ensemble using the Bagging architecture

in a real classification problem, we would not usually choose

TABLE III
AVERAGE ERROR DELIVERED BY BAGGING

ID NN DT SVM NB kNN

1 0.043±0.01 0.011±0.01 0.031±0.02 0.135±0.05 0.007±0.01
2 0.266±0.09 0.273±0.08 0.301±0.08 0.259±0.09 0.286±0.10

3 0.325±0.05 0.281±0.05 0.417±0.03 0.441±0.09 0.362±0.11

4 0.082±0.02 0.067±0.03 0.064±0.02 0.140±0.05 0.056±0.02
5 0.193±0.06 0.156±0.07 0.179±0.07 0.215±0.08 0.198±0.05

6 0.199±0.03 0.141±0.02 0.148±0.02 0.222±0.04 0.196±0.04

7 0.249±0.07 0.237±0.05 0.231±0.05 0.241±0.06 0.289±0.06

8 0.417±0.18 0.217±0.25 0.000±0.00 0.333±0.24 0.017±0.05

9 0.309±0.10 0.271±0.10 0.391±0.11 0.485±0.10 0.300±0.10

10 0.258±0.06 0.281±0.08 0.291±0.05 0.245±0.06 0.333±0.06

11 0.165±0.07 0.198±0.08 0.171±0.07 0.171±0.07 0.241±0.08

12 0.129±0.04 0.187±0.06 0.142±0.05 0.149±0.08 0.180±0.06

13 0.086±0.05 0.091±0.05 0.108±0.05 0.177±0.05 0.137±0.04

14 0.040±0.05 0.060±0.08 0.047±0.04 0.040±0.05 0.047±0.04

15 0.118±0.02 0.025±0.01 0.073±0.01 0.199±0.02 0.032±0.01

16 0.036±0.01 0.012±0.01 0.060±0.01 0.073±0.02 0.036±0.01

17 0.192±0.07 0.201±0.06 0.216±0.09 0.298±0.05 0.135±0.05
18 0.323±0.05 0.245±0.03 0.259±0.04 0.556±0.06 0.298±0.04

19 0.046±0.03 0.032±0.03 0.032±0.02 0.097±0.03 0.081±0.04

20 0.146±0.01 0.186±0.01 0.134±0.01 0.200±0.01 0.258±0.02

TABLE IV
AVERAGE ERROR DELIVERED BY BOOSTING

ID NN DT SVM NB kNN

1 0.024±0.02 0.003±0.01 0.004±0.01 0.058±0.03 0.007±0.01

2 0.301±0.08 0.346±0.10 0.322±0.10 0.305±0.10 0.311±0.11

3 0.343±0.05 0.276±0.06 0.339±0.06 0.362±0.07 0.359±0.11

4 0.076±0.02 0.038±0.02 0.061±0.02 0.098±0.02 0.062±0.02

5 0.201±0.07 0.168±0.08 0.206±0.04 0.222±0.07 0.198±0.05

6 0.171±0.04 0.158±0.03 0.149±0.03 0.199±0.04 0.197±0.04

7 0.261±0.08 0.281±0.04 0.231±0.05 0.238±0.04 0.291±0.07

8 0.367±0.19 0.433±0.22 0.000±0.00 0.283±0.24 0.017±0.05

9 0.326±0.12 0.267±0.11 0.405±0.12 0.542±0.10 0.295±0.09

10 0.297±0.05 0.287±0.06 0.262±0.05 0.261±0.04 0.336±0.06

11 0.211±0.09 0.211±0.07 0.178±0.06 0.185±0.08 0.247±0.08

12 0.174±0.07 0.193±0.06 0.193±0.08 0.162±0.05 0.180±0.06

13 0.080±0.07 0.086±0.03 0.105±0.05 0.091±0.05 0.134±0.04

14 0.040±0.05 0.060±0.06 0.027±0.05 0.060±0.05 0.047±0.04

15 0.092±0.02 0.017±0.01 0.073±0.01 0.201±0.02 0.030±0.01

16 0.040±0.01 0.010±0.01 0.053±0.01 0.058±0.01 0.037±0.01

17 0.172±0.04 0.192±0.07 0.178±0.07 0.197±0.05 0.144±0.07
18 0.324±0.03 0.236±0.04 0.260±0.04 0.556±0.05 0.299±0.03

19 0.048±0.03 0.037±0.03 0.039±0.03 0.039±0.02 0.074±0.04

20 0.152±0.01 0.179±0.02 0.133±0.01 0.200±0.01 0.262±0.02

the learning algorithms that provided the best results.

When analysing the performance of the ensembles gener-

ated by Boosting (Table IV), we can assess the use of this

algorithm in problems with noisy and missing values, since

Boosting usually delivers a poor performance in these cases,

when compared with other architectures. In the cases with

noisy data (mainly guassian3 and waveform-500 datasets),

we can observe that ensembles generated by Boosting and

composed of NN and NB present lower error rate than

Bagging for Gaussian3. In addition, for the waveform-500

dataset, ensembles generated by Boosting and composed of

NN provided lower error rate than Bagging. These results

confirm that the Boosting method delivered a reasonable

performance, even under circumstances in which it is known

to be not very effective.

For the Multiboosting method (Table V), we can observe

that although this method contains the main advantages of

Bagging and Boosting, the performance delivered by the use

of this method was superior than Bagging and Boosting in

only some cases.

In order to define the best overall architecture, Table VI
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TABLE V
AVERAGE ERROR DELIVERED BY MULTIBOOSTING

ID NN DT SVM NB kNN

1 0.037±0.02 0.004±0.01 0.007±0.01 0.134±0.05 0.007±0.01

2 0.283±0.09 0.294±0.08 0.308±0.08 0.291±0.09 0.279±0.13
3 0.348±0.06 0.276±0.06 0.389±0.05 0.391±0.09 0.359±0.11

4 0.076±0.02 0.049±0.02 0.060±0.03 0.126±0.03 0.062±0.02

5 0.182±0.07 0.155±0.06 0.190±0.07 0.193±0.07 0.198±0.05

6 0.178±0.04 0.140±0.04 0.154±0.04 0.213±0.04 0.197±0.04

7 0.260±0.08 0.245±0.04 0.229±0.05 0.240±0.05 0.291±0.07

8 0.367±0.19 0.467±0.17 0.000±0.00 0.283±0.24 0.017±0.05

9 0.322±0.11 0.220±0.09 0.381±0.12 0.518±0.12 0.295±0.09

10 0.272±0.07 0.301±0.06 0.255±0.03 0.252±0.06 0.336±0.06

11 0.168±0.07 0.218±0.07 0.171±0.08 0.175±0.07 0.247±0.08

12 0.142±0.06 0.174±0.06 0.161±0.06 0.162±0.07 0.180±0.06

13 0.068±0.04 0.074±0.04 0.111±0.05 0.088±0.05 0.134±0.04

14 0.040±0.05 0.047±0.06 0.027±0.03 0.047±0.03 0.047±0.04

15 0.103±0.01 0.019±0.01 0.072±0.01 0.201±0.02 0.030±0.01

16 0.039±0.01 0.009±0.01 0.061±0.01 0.068±0.02 0.037±0.01

17 0.183±0.06 0.187±0.09 0.188±0.08 0.216±0.09 0.144±0.07
18 0.330±0.06 0.236±0.04 0.264±0.05 0.557±0.05 0.299±0.03

19 0.041±0.03 0.032±0.03 0.035±0.02 0.076±0.04 0.074±0.04

20 0.142±0.01 0.172±0.02 0.134±0.01 0.199±0.01 0.262±0.02

presents the name of the best case (BA for Bagging, BO for

Boosting and MB for Multiboosting) for all 20 classification

problems and five homogeneous structures. In this table, we

present the architecture that provided the best performance

(the lowest error rate in most of the 21 instances for each

classification problem), either Bagging (BA), Boosting (BO)

or Multiboosting (MB). The last line and column present the

best architecture for the specific dataset (line) and homoge-

neous structure (column). In case of a draw, both names are

presented. For example, in the last line (homogeneous en-

semble structure), we have two draws, ensembles composed

of decision trees (DTs), Bagging and Multiboosting, and

SVMs, Boosting and Multiboosting. According to this table,

we can observe that all three architectures have a similar

performance, mainly when we consider the homogeneous

architectures (columns), in which Bagging provided the best

performance for three cases (NN, DT and KNN), while

Boosting and Multiboosting provided the best performance

in 2 cases (SVM and NB for Boosting and DT and SVM for

Multiboosting).

In order to analyse the difference in performance, from

a statistical point of view, the Friedman Test was applied,

comparing the results of all three architectures, using all

220 instances of the classification problems and five homo-

geneous ensemble structures. The results of the Friedmann

Test are presented in Table VII and the cases in which

the performance are statistically different are in bold. As

it can be seen in Table VII, the performance of all three

architectures are very similar, since the performance are

statistically different in only 20 cases (out of 100 cases).

A. Meta-learning Results

Based on the results obtained in the previous section, we

observe that there is no pattern of behaviour for these pa-

rameters (architecture and components). In addition, in cases

where we expected one method to have a good performance,

it did not happen. The opposite also happened in some

cases. Therefore, the idea of automatic design of ensembles

TABLE VI
THE BEST ARCHITECTURE ACHIEVE FOR EACH PROBLEM IN EACH

HOMOGENEOUS STRUCTURE.

ID NN DT SVM NB kNN Best
1 BO BO BO BO BA BO
2 BA BA BA BA MB BA
3 BA MB BO BO BO BO
4 BO BO MB BO BA BO
5 MB BA BA MB BO BA/MB
6 BO BA BA BO BA BA
7 BA BA MB BO BA BA
8 BO BA BA BO BA BA
9 BA MB MB BA BO BA/MB
10 BA BA MB BA BA BA
11 BA BA MB BA BA BA
12 BA MB BA BA BA BA
13 MB MB BO MB BO MB
14 BA MB BO BA BA BA
15 BO BO MB BA BO BO
16 BA MB BO BO BA BO/BA
17 BO MB BO BO BA BO
18 BA BO BA BO BO BO
19 MB BA BA BO BO BA/BO
20 MB MB BO MB BA MB
Best BA BA/MB BO/MB BO BA

TABLE VII
RESULTS OF THE FRIEDMAN TEST

ID NN DT SVM NB kNN
1 0.1313 0.0150 0.0002 0.0048 1.0000
2 0.1962 0.0050 0.6331 0.0821 0.6412
3 0.4692 1.0000 0.0018 0.0060 0.8669
4 0.5811 0.0002 0.6951 0.0018 0.0695
5 0.4994 0.1629 0.1072 0.2828 1.0000
6 0.1313 0.2143 0.6483 0.0688 1.0000
7 0.2564 0.1186 0.9623 0.7788 1.0000
8 0.6065 0.0089 1.0000 0.8669 1.0000
9 0.8789 0.0342 0.1664 0.0388 0.7165
10 0.1306 0.9155 0.1846 0.3941 0.8669
11 0.0080 0.9692 0.4493 0.9608 0.3679
12 0.1132 0.5045 0.0663 0.7558 1.0000
13 0.3172 0.1316 0.9556 0.0004 0.3679
14 1.0000 0.2636 0.1054 0.5488 1.0000
15 0.0008 0.0572 0.8825 0.5134 0.0067
16 0.0319 0.4227 0.2437 0.1394 0.6065
17 0.7026 1.0000 0.1778 0.0014 0.3679
18 0.5984 0.3128 0.8920 0.6703 1.0000
19 0.8521 0.3679 0.4378 0.0004 0.0498
20 0.0020 0.1096 0.9747 0.2359 0.0622

systems has emerged, apart from the approaches that apply

bio-inspired methods, such as genetic algorithms [19], [20].

The main aim of this investigation is to learn about the

performance of the different ensemble systems in different

classification problems and to build meta-learners that are

used to recommend the best architecture and components

for an unseen classification problem. Table VIII presents

the results (error rate and standard deviation) of the meta-

learners (MLP, DT, SVM and k-NN) for the best architecture,

while Table IX presents the recommendation of the learning

algorithm to be used in the ensemble systems, when applying

Bagging, Boosting and Multiboosting meta-datasets (ap-

proach I). Finally, Table X, illustrates the recommendation of

learning algorithms according to a recommended architecture

(approach II).

In a general perspective, we can observe from Ta-
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TABLE VIII
ERROR RATES OF THE META-LEARNERS FOR ARCHITECTURE

Meta-learners
MLP DT SVM k-NN

0.271 ± 0.038 0.281 ± 0.044 0.357 ± 0.026 0.249 ± 0.040

TABLE IX
ERROR RATES FOR THE META-LEARNERS FOR COMPONENTS

RECOMMENDATION: APPROACH I

Meta-learners
MLP DT SVM k-NN

BA 0.145 ± 0.026 0.153 ± 0.031 0.277 ± 0.008 0.237 ± 0.035

BO 0.145 ± 0.027 0.139 ± 0.032 0.274 ± 0.007 0.258 ± 0.030

MB 0.133 ± 0.027 0.136 ± 0.029 0.279 ± 0.008 0.223 ± 0.033

bles VIII, IX and X that the results obtained by the meta-

learners are very promising. We obtained error rates lower

than 30% in all cases (architecture and individual classifiers).

For the recommendation of the individual classifiers, the error

rate was lower than 15% in most of the cases. Of the meta-

learners, we can observe that the decision tree has provided

the lowest error rates in the recommendation process in

the majority of cases. When comparing both approaches for

the recommendation of the individual classifiers (approaches

I and II, in Tables IX and X), the performance of both

approaches are very similar, but the lowest error rate was

obtained by the DT meta-learner using approach II (Table X),

reaching an error rate of 0.132, which is very promising for

the meta-learning field.

The results obtained in this paper corroborates to

strengthen even further the idea that meta-learning can be

a powerful tool to be exploited in ensemble systems.

VII. CONCLUSIONS

In this paper, we presented a meta-learning approach for

the recommendation of architecture and individual classi-

fiers in ensemble. For the architecture recommendation, we

selected the most used methods, Bagging, Boosting and

Multiboosting. In addition, we selected well-known learning

algorithms with different classification criteria to compose

the ensemble – NN, DT, SVM, NB and k-NN.

Through this analysis, we can conclude that meta-learning

is a feasible technique to be used in the choice process

of important parameters of an ensemble, since we were

able to reach meta-learners with accuracy level superior to

85%, which can be considered as having good performance.

This approach can be seen as a promising alternative in

the automatic design of ensemble, when compared with

some existing approaches, mainly the ones using bio-inspired

methods.

As future work, we aim to investigate the use of different

types of meta-features that may be more representative

for the recommendation process with ensemble systems. In

TABLE X
ERROR RATES FOR THE META-LEARNERS FOR COMPONENTS

RECOMMENDATION: APPROACH II

Meta-learners
MLP DT SVM k-NN

0.139 ± 0.017 0.132 ± 0.015 0.272 ± 0.004 0.241 ± 0.019

addition, we aim to apply the meta-learning approach to rec-

ommend other parameters in ensemble systems, such as the

selection of heterogeneous components and the combination

method.
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