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Abstract—Supervised classification is the most studied task in
Machine Learning. Among the many algorithms used in such
task, Decision Tree algorithms are a popular choice, since they
are robust and efficient to construct. Moreover, they have the
advantage of producing comprehensible models and satisfactory
accuracy levels in several application domains. Like most of the
Machine Leaning methods, these algorithms have some hyper-
parameters whose values directly affect the performance of the
induced models. Due to the high number of possibilities for
these hyper-parameter values, several studies use optimization
techniques to find a good set of solutions in order to produce
classifiers with good predictive performance. This study inves-
tigates how sensitive decision trees are to a hyper-parameter
optimization process. Four different tuning techniques were
explored to adjust J48 Decision Tree algorithm hyper-parameters.
In total, experiments using 102 heterogeneous datasets analyzed
the tuning effect on the induced models. The experimental results
show that even presenting a low average improvement over all
datasets, in most of the cases the improvement is statistically
significant.

I. INTRODUCTION

Supervised classification is one of the main Machine Learn-
ing (ML) tasks, and as a consequence, there is a large variety
of classification algorithms available. Among them, Decision
Tree (DT) induction algorithms have been popularly used [1].
As classifiers, DTs are represented by rules structured as a tree,
being widely used especially due to its comprehensible nature
which resembles the human reasoning [2]. Some authors
stated that DTs also figure among the most used data mining
algorithms by researchers and practitioners, which reinforces
its importance in the ML area [3], [4].

DT induction algorithms have several advantages over many
other ML algorithms, such as robustness to noise (missing
values, imbalanced classes), low computational cost, and the
ability to deal with redundant attributes [2]. There are many
well-known DT induction algorithms in literature, such as
Quinlan's C4.5 algorithm [5] and Breiman et al.'s Classification
and Regression Tree (CART) [6].

The values chosen for the hyper-parameters (HPs) of ML
algorithm directly affect the predictive performance of the
models induced by them. Thus, a good choice of these
values has been the subject of study in ML for years. These
studies have been run to understand the HP effect of different

algorithm, using techniques from the simplest ones, such as
Grid Search (GS) or Random Search (RS) [7], to the more
complex, such as meta-heuristics (MTH) [8] and meta-learning
(MtL) [9]. Although many techniques have been proposed
for Support Vector Machines (SVMs) [10], [11] and Neural
Networks (NNs) [12], few studies have been conducted for
HP optimization of DT induction algorithms [13]–[15].

This study investigate how sensitive DT induction algo-
rithms are to a HP tuning process, specially the J48 algorithm,
a WEKA [16] implementation for the Quinlan‘s C4.5 DT
induction algorithm [5]. Experiments were carried out with
a large number of heterogeneous datasets, and four different
tuning techniques: RS, Genetic Algorithm (GA) [17], Particle
Swarm Optimization (PSO) [18], and an Estimation of Distri-
bution Algorithms (EDA) [19]. The former three techniques
are commonly used MTHs for HP tuning. The results obtained
in terms of the predictive accuracy when using these four
techniques are compared with the results obtained by the J48
induced by its default HPs values (DF).

This paper is structured as follows: section II introduces
the HP tuning problems and some related work; section III
describes the experimental methodology and the evaluation of
the tuning techniques; the results are discussed in section IV;
finally, the conclusions and future research directions are
presented.

II. HYPER-PARAMETER TUNING

HP tuning can largely affect the predictive performance of
ML algorithms [9]. Setting a suitable configuration for the
HPs of a ML algorithm is usually performed by trial and
error. Depending on the training time of the ML algorithm
used, finding a good set of values manually can be very time-
consuming. As a result, recent works in HP for ML algorithms
focus on the development of better HP tuning techniques [12],
[20].

The HP process is usually treated as an optimization (black-
box) problem, whose objective function is associated with the
predictive performance of the model induced by the algorithm.
More formally:

Let H = H1 × H2 × · · · × Hk be the HP-space for the
algorithm a ∈ A where A is the set of ML algorithms. Each



Hi represents a set of admissible values for the ith HP of a (i ∈
{1, . . . , n}) and can be usually defined by some constraints.
Let D be a set of datasets where D ∈ D is a dataset from D.
The function f : A × D × H → R measures the predictive
performance of the algorithm a ∈ A on the dataset D ∈
D given a HP configuration h = (h1, h2, . . . , hk). Without
loss of generality, higher values of f mean higher predictive
performance.

The task of HP tuning is, given a ∈ A, H and D ∈ D, to
find h? = (h?1, h

?
2, . . . , h

?
k) such that

h? = arg max
h∈H

f(a,D,h) (1)

The optimization can be carried out based on any per-
formance measure f , which can even be defined by multi-
objective criteria. There are some aspects that can make the
HP tuning more difficult:
• HP configurations that lead to a model with high predic-

tive performance for a given dataset may not lead to high
predictive performance for other datasets;

• HP values often depend on each other (as in the case of
SVMs [21]). Hence, optimizing HPs independently is not
a reasonable strategy;

• the evaluation of a specific HP configuration, let alone
many, can be very time consuming.

A. Recent Approaches

Many techniques have been proposed for HP tuning of
classification algorithms [12], [20]. Some studies use Grid
Search (GS) [7], a simple deterministic approach which re-
duces each HP-space dimension Hi to a finite set of values
Hr

i = P = Hr
1 × Hr

2 × · · · × Hr
k that are strictly evaluated.

GS obtained good results in low dimensional problems. For
optimization of many HPs in large datasets, GS becomes
computationally expensive. For these scenarios, some studies
have explored Random Search (RS) techniques [22].

RS starts with a simple HP configuration in P , which is
extended by a randomly generated HP configuration at each
iteration. Usually, the process stops after a given number of
iterations. RS has obtained efficient results in the optimization
of Deep Learning (DL) algorithms [20], [23].

Bio-inspired approaches, such as GA or PSO have also
been largely used for HP optimization [8], [24], [25]. In these
techniques, an initial population P is continuously updated ac-
cording to various stochastic strategies imitating evolutionary
processes and behaviors of swarms, respectively.

Generally, population based techniques follow a generic
iterative process described in Algorithm 1, based on updating
a population of initial solutions according to a given strategy
until some stopping criteria are satisfied.

Sequential Model-based Optimization (SMBO) [26] has
also emerged as a successful HP tuning technique in ML.
In SMBO, P is extended by a new HP configuration h′ at
each iteration, such that the expected value of f(a,D,h′) is
maximal according to an induced meta-model f̂ approximating
f on the current population. In the experiments reported in

Algorithm 1 Generic population-based HP tuning process
procedure TUNEHP(a ∈ A,D ∈ D,H, f, strategy)
P ← {h1,h2, . . . ,hn} . initial population
F ← {f(a,D,hi) | hi ∈ P} . population fitness
repeat
P ← UPDATE(P,F , strategy)
F ← {f(a,D,hi) | hi ∈ F}

until stopping criteria not satisfied
return h? ← arg max

h∈P
f(a,D,h) ∈ F

[12], [27], [28], SMBO performed better than GS and RS and
matched or outperformed state-of-the-art techniques in several
HP optimization tasks.

Several automated tools for HP optimization of ML algo-
rithms are also available in the literature, such as techniques
based on local search (ParamILS [29]), estimation of distribu-
tions (REVAC [30]) and Bayesian optimization (Auto-Weka
[31] and Auto-skLearn [32]).

B. Related works

Few studies have investigated the HP tuning of DT induction
algorithms. In [13], the authors investigated the prediction of
the training time for several time target classifiers, including
DT, using MtL. In the process, five numeric HPs of the
CART DT induction algorithm were optimized using GS.
Similar works can be found: [14] tuned two HPs of the J48
algorithm in a case study with educational datasets; and [15]
implemented an open-source MtL system to predict accuracies
of target classifiers, one of them is a DT induction algorithm
(a version of the C5.0), which has its confidence factor (C)
adjusted using GS.

A special case of tuning is done by the “Combined Al-
gorithm Selection and HP optimization” (CASH) tools. They
were introduced by [31] as the Auto-WEKA framework, and
further studied as the Auto-sklearn tool [32]. Both apply
SMBO to select algorithms and their configurations to new
problems. Auto-WEKA encapsulates the J48, while the Auto-
sklearn a CART DT.

III. MATERIALS AND METHODS

In the experiments, four different techniques for HP op-
timization were investigated, using 102 datasets: a simple
Random Search strategy (RS), equivalent to a GS process (as
suggested by [23]); and three different meta-heuristics (MTHs)
- Genetic Algorithms (GAs), Particle Swarm Optimization
(PSO), and Estimation of Distribution Algorithm (EDA). The
average per class accuracy was used to assess the predictive
performance of the induced DT models and guide the search
performed by the optimization techniques.

A. J48’s Hyper-parameter space

The experiments optimized the HP of the J48 algorithm,
a WEKA implementation for Quinlan’s C4.5 algorithm. This
algorithm was chosen due to its wide acceptance and use
in ML [2]. The J48 HP-space is shown in Table I. The



TABLE I
J48 HYPER-PARAMETER SPACE EXPLORED IN EXPERIMENTS.

Symbol Hyper-parameter Range Type Default Requires

C pruning confidence {0.001, 0.5} real 0.25 R = False
M minimum number of instances {1, 50} integer 2 -
N number of folds for reduced error pruning {2, 10} integer 3 R = True
O do not collapse the tree {False,True} boolean False -
R use reduced error pruning {False,True} boolean False -
B use binary splits only {False,True} boolean False -
S do not perform subtree raising {False,True} boolean False -
A Laplace smoothing for predicted probabilities {False,True} boolean False -
J do not use MDL correction for info gain on numeric attributes {False,True} boolean False -

experiments focused only on pruned trees, since they looked
for the most interpretable models without loss of predictive
performance. For each HP, the table shows its allowed range
of values, default HP values obtained from WEKA, and its
constraints for setting new values. The range for the pruning
confidence (C) HP and the M values was the same used in [15]
and [13], respectively. During the optimization process, each
HP setting is coded as a numeric array with nine elements.

B. Experimental methodology

A few experimental methodologies to repeatedly select and
assess classification models can be found in the literature [33].
When a combined optimization and evaluation is required, a
nested cross-validation (N-CV) methodology is usually rec-
ommended to assess the performance of models. The N-CV is
used in a theoretical scenario, and may be not practical in real
tasks, especially HP-tuning, due to the computational costs.

Thus, for the experiments in this study, a modified 10-fold
N-CV method was applied: an outer loop iterates over 10 folds,
and a 8-1 holdout split is used in the inner loop to evaluate
the fitness of each candidate HP configuration and guide the
search of the optimization techniques.

At each CV iteration, test accuracies are assessed using the
model induced with the training partitions considering the HP
values found by the optimization technique. It is important
to mention that the test accuracy values were not used in
the model selection process, only to assess the predictive
performance of the selected models.

C. Datasets

The experiments were carried out using 102 datasets from
the UCI ML repository1 [34]. Table II summarizes the main
aspects of these datasets: number of examples (N), number of
attributes (D) and number of classes (C).

D. Tuning techniques

The GA, PSO and EDA meta-heuristics used for HP tuning
are implemented using the GA, pso, and copulaedas R
packages, respectively. The experiments used the same GA and
PSO parameter values suggested in [35]: an uniform random
mutation rate of 0.05; a tournament selection with size k=3;
and a local arithmetic crossover methodology. For the EDA,

1http://archive.ics.uci.edu/ml/

the Gaussian Copula EDA (GCEDA) with default parameter
values provided by its R package was used. The RS technique
was implemented by the authors.

Besides, the RWeka implementation of J48 DTs as a
baseline algorithm was used in the experiments. The baseline
is the HP default values provided by the R package (DFs).
To perform well, EDAs need at least 100 individuals in the
population [19]. Thus, the size of the initial population for all
optimization techniques was set to 100. The maximum number
of iterations was empirically defined as it = 50. This leads to
at most 50×100 = 5000 evaluations of HP values (individuals)
during the search. Since the techniques are stochastic, each one
was executed 30 times for each dataset.

IV. EXPERIMENTS

Figure 1 summarizes the experimental results: the first chart
shows the average accuracy improvement by the tuning tech-
niques in each dataset (‘improvement’); second presents the
average accuracy obtained by the best tuned solution compared
with the DF values per dataset; and the last one depicts
the Wilcoxon statistical significance comparison between each
technique and the DF values.

A. Average Improvement

The top chart in Fig. 1 shows the average improvement
obtained by GA, PSO, EDA and RS, when compared with
the DF average accuracies (scaled between 0 and 1). There
is a small difference in the gains of each tuning technique
regarding the DF. The predictive performance obtained by the
tuning techniques are very similar, and their curves almost
overlap.

The Friedman test [36] with significance level at α = 0.05
was used to assess the statistical significance of the experi-
mental results. The null hypothesis states that the classifiers
induced with the solutions found by the tuning techniques are
equivalent in terms of the averaged accuracy per class. If the
null hypothesis was rejected, the Nemenyi post-hoc test was
applied, stating that the performance of two different tech-
niques is significantly different if the corresponding average
ranks differ by at least a Critical Difference (CD) value.

Figure 2 presents the CD diagram for the statistical tests.
Techniques are connected when there is no statistically sig-
nificant difference between them (at α = 0.05 and CD



TABLE II
(MULTI-CLASS) CLASSIFICATION UCI DATASETS USED IN THE EXPERIMENTS. IT IS PRESENTED, FOR EACH DATASET, THE NUMBER OF EXAMPLES (N),

NUMBER OF ATTRIBUTES (D) AND THE NUMBER OF CLASSES (C).

No. Name N D C No. Name N D C

•1 abalone-11class 3842 8 11 •52 habermans-survival 289 3 2
•2 abalone-28class 4177 8 28 •53 hayes-roth 93 4 3
•3 abalone-3class 4177 8 3 •54 heart-disease-processed-cleveland 303 13 5
•4 abalone-7class 3295 8 7 •55 heart-disease-processed-hungarian 293 13 2
5 acute-inflammations-nephritis 99 6 2 •56 heart-disease-processed-switzerland 123 12 5
6 analcatdata authorship 841 70 4 •57 heart-disease-processed-va 199 13 5
•7 analcatdata boxing1 120 3 2 •58 heart-disease-reprocessed-hungarian 293 13 5
•8 analcatdata boxing2 132 3 2 •59 hepatitis 155 19 2
9 analcatdata creditscore 100 6 2 •60 horse-colic-surgical 300 27 2
•10 analcatdata dmft 556 4 6 •61 indian-liver-patient 570 10 2
•11 analcatdata germangss 400 5 4 62 ionosphere 350 33 2
12 analcatdata lawsuit 263 4 2 63 iris 147 4 3
13 appendicitis 106 7 2 •64 kr-vs-kp 3196 36 2
14 artificial-characters 4891 7 10 65 leaf 340 15 30
•15 autoUniv-au1-1000 997 20 2 •66 led7digit 146 7 10
•16 autoUniv-au4-2500 2500 100 3 67 leukemia-haslinger 100 50 2
•17 autoUniv-au6-1000 1000 40 8 68 lsvt-voice-rehabilitation 126 307 2
•18 autoUniv-au6-250-drift-au6-cd1-500 750 40 8 •69 lymphography 148 18 4
•19 autoUniv-au6-cd1-400 400 40 8 •70 mammographic-mass 689 5 2
•20 autoUniv-au7-300-drift-au7-cpd1-800 1100 12 5 •71 meta-data 528 21 24
•21 autoUniv-au7-700 700 12 3 •72 mfeat-fourier 1994 76 10
•22 autoUniv-au7-cpd1-500 500 12 5 73 molecular-promotor-gene 106 57 2
•23 backache 180 31 2 •74 monks1 432 6 2
•24 balance-scale 625 4 3 •75 monks2 432 6 2
•25 banana 5292 2 2 76 monks3 438 6 2
•26 bank-marketing 4521 16 2 77 movement-libras 330 90 15
•27 banknote-authentication 1348 4 2 78 mushroom 8124 21 2
•28 blood-transfusion-service 533 4 2 •79 optdigits 5620 62 10
29 breast-cancer-wisconsin 463 9 2 •80 ozone-eighthr 2526 72 2
30 breast-tissue-4class 105 9 4 •81 ozone-onehr 2528 72 2
•31 breast-tissue-6class 105 9 6 •82 page-blocks 5406 10 5
32 bupa 341 6 2 83 parkinsons 195 22 2
•33 car-evaluation 1728 6 4 •84 phoneme 5395 5 2
•34 cardiotocography-3class 2116 35 3 85 robot-nav-sensor-readings-2 5177 2 4
•35 climate-simulation-craches 540 20 2 86 robot-nav-sensor-readings-4 5406 4 4
•36 cmc 1425 9 3 •87 saheart 462 9 2
•37 cloud 108 6 4 •88 seeds 210 7 3
38 collins 500 21 15 •89 statlog-german-credit-numeric 1000 24 2
39 connectionist-mines-vs-rocks 208 60 2 •90 statlog-german-credit 1000 20 2
•40 connectionist-vowel-reduced 528 10 11 •91 statlog-heart 270 13 2
•41 connectionist-vowel 990 13 11 •92 statlog-image-segmentation 2086 18 7
•42 dermatology 366 34 6 •93 statlog-landsat-satellite 2859 36 6
43 ecoli 336 7 8 94 statlog-vehicle-silhouettes 846 18 4
•44 energy-efficiency-y1 768 8 37 95 steel-plates-faults 1941 33 2
•45 energy-efficiency-y2 768 8 38 96 teaching-assistant-evaluation 110 5 3
•46 fertility-diagnosis 100 9 2 •97 texture 5473 40 11
•47 first-order-theorem 5636 51 6 98 thoracic-surgery 470 16 2
•48 flags-colour 194 28 8 •99 thyroid-allbp 2751 26 5
49 flags-religion 194 28 8 •100 thyroid-allhyper 2751 26 5
•50 flare 527 12 6 101 thyroid-newthyroid 215 5 3
51 glass 213 9 6 102 vertebra-column-3c 310 6 3

= 0.604). According to the test, EDA had the best average
ranking. With the exception of the PSO technique, it was
statistically superior to all techniques. When using the DF
values, the predictive performance was statistically inferior to
the predictive performance of the algorithms optimized by all
tuning techniques.

B. Best Solutions

Based on the Friedman average ranking, EDA was selected
to represent the ‘Best’ tuning technique. Figure 1 (middle
chart) compares its average performance (yellow line) with the
DF values (green line). The datasets were sorted according
to their accuracy values reached during the tuning process
(highest to lowest). We can note that the best induced solutions
are at least equivalent to the DF ones. There are several

datasets where the improvements were small if compared
to the use of DFs. This may be due to the nature of the
classification problem, where the use of DF HP values had
already led to almost a maximum performance, or the DFs
were chosen as the best overall values on the UCI datasets.

The Wilcoxon paired-test was also applied to assess the sta-
tistical significance of the ‘Best’ and DF results. It was applied
to the solutions obtained from each of the 30 executions for
each dataset (at α = 0.05). The bottom chart at Fig. 1 identifies
the datasets where statistically significant improvements were
detected when using each one of the techniques. White squares
show datasets where DF was the best choice. Black and gray
cells show datasets where a technique was better than DF with
and without statistical significance, respectively.

For most of the datasets (70 of 102), the test showed statisti-
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Fig. 1. Average performance improvement obtained by the tuning techniques (top), maximum performance obtained by the DT models generated with best
solutions compared with DF values (middle), and Wilcoxon paired-test results between each technique and DF over 30 executions.

cally significant differences, even when the improvement was
very small (the mean average improvement overall datasets
was around 0.022). These datasets were also highlighted with
a bullet (•) in Table II.

Trying to identify the situations where the J48 algorithm
should be tuned, some measures to characterize the datasets
were extracted from each dataset [37]. These measures were
used by a DT induction algorithm, with default hyper-
parameter values, to extract a tree able to explain when to
tune and when not to tune the learning algorithm.

Two measures were selected by the model: the ‘nb’ - the
performance of a Naive Bayes (NB) classifier; and ‘f2’ - a data
complexity measure that describes the overlap of the per-class
bounding boxes. They show that default values are good for a
NB classifier performs good in datasets with a small number
of classes (nb ≥ 90% ∧ C ≤ 4), or in datasets with a low
overlapping (f2 ≤ 0.191) between the classes.

Using a Random Forest (RF) instead a DT to generate an
interpretable model, it was noted that both measures, ‘nb’ and
‘f2’, are among the five most important ones. Thus, the use of
DF values seems to be adequate in simple classification prob-
lems. Usually the DF values are good, but still there many
cases where it is better to tune the HPs. However, further
analysis should be done to clarify specific cases where the
tuning is required.

Regarding the improvements obtained by the HP tuning, DT
feature selection embedded process seems to contribute more
to the final model than HP tuning. This can be due to the

CD = 0.604

1 2 3 4 5

EDA
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Fig. 2. Comparison of the predictive accuracy values of the tuning techniques
according to the Nemenyi test. Groups of technique that are not significantly
different (at α = 0.05) are connected.

small number of candidate solutions evaluated by the tuning
techniques during the optimization: 5000 evaluations may be
not sufficient to perform a good search. Thus, this value should
to be increased in future experiments.

V. CONCLUSIONS

This work investigated the sensitivity of the J48 DTs in-
duction algorithm to a HP tuning process. Experiments were
carried out with 102 datasets using meta-heuristics and a RS
technique. Tuned models were compared with DTs generated
with DF HP values (provided by RWeka). Results showed
similar predictive performances between the tuning techniques,
but most of them performed better than the DF values with
statistical significance.

In general, the DF values are good, but analyzing the results
per dataset, even if most of them presenting a small improve-
ment, in 70 of the 102 datasets the differences in the predictive
performance were statistically significant. According to the



results, the DF values can be adequate to simple classification
tasks, but even for some of these cases, HP optimization is
better.

Future works include to expand the experiments adding
more datasets, and increase the budget size of the tuning
techniques. The authors also plan to include SMBO and
IRACE techniques in the experiments. Finally the authors
want to use OpenML [38] to make available all results and
implementations, allowing reproducibility and further studies.

ACKNOWLEDGMENT

The authors would like to thank CAPES and CNPq (Brazil-
ian Agencies) for their financial support, specially to the grants
#2012/23114-9 #2013/07375-0 and #2015/03986-0 from São
Paulo Research Foundation (FAPESP), and the Slovakian
project VEGA 1/0475/14.

REFERENCES

[1] T. M. Mitchell, Machine Learning. New York: McGraw Hill, 1997.
[2] R. Barros, M. Basgalupp, A. de Carvalho, and A. Freitas, “A survey of

evolutionary algorithms for decision-tree induction,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
vol. 42, no. 3, pp. 291–312, May 2012.

[3] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery
Handbook. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[4] D. Jankowski and K. Jackowski, “Evolutionary algorithm for decision
tree induction,” in Computer Information Systems and Industrial Man-
agement, ser. Lecture Notes in Computer Science, K. Saeed and V. Snel,
Eds. Springer Berlin Heidelberg, 2014, vol. 8838, pp. 23–32.

[5] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Chapman & Hall (Wadsworth, Inc.), 1984.

[7] I. Braga, L. P. do Carmo, C. C. Benatti, and M. C. Monard, “A note on
parameter selection for support vector machines,” in Advances in Soft
Computing and Its Applications, ser. LNCC, F. Castro, A. Gelbukh, and
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