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Abstract—The Goal-Directed Risk-Sensitive Markov Decision
Process allows arbitrary risk attitudes for the probabilistic
planning problem to reach a goal state. In this problem, the
risk attitude is modeled by an expected exponential utility and a
risk factor λ. However, the problem is not well defined for every
λ, posing the problem of defining the maximum (extreme) value
for this factor. In this paper, we propose an algorithm to find
this ε-extreme risk factor and the corresponding optimal policy.

I. INTRODUCTION

Sequential decision problems can be modeled as a Markov
Decision Processes (MDP). In MDPs, at each instant of
discrete time, the agent observes a state, executes an action,
transits to a next state following a probabilistic transition
function and pays a cost. Most of the MDP solvers consider
risk-neutral attitude, i.e., they seek policies that minimize the
expected cumulative cost [1]. While such a policy is good in
the expected case, it is known that in some cases, the decision
makers prefer a risk averse attitude [2], [3].

A model that considers arbitrary attitude (neutral, prone and
averse) towards risk is the Risk Sensitive Markov Decision
Process (RSMDP) that minimizes the expected exponential
utility and uses a risk factor λ. Patek [4] extends the notion
of Goal Directed MDPs (an MDP that includes a set of goal
states) to a model with an exponential risk-averse objective
(called Goal Directed Risk Sensitive Markov Decision Pro-
cess) and has already proved the conditions for the existence
of a valid policy for this model. However, he has not showed
how to build one and what is the maximum value for this risk
factor.

In this paper, we study the problem of extreme risk averse
in Goal Directed Risk Sensitive Markov Decision Process, and
we propose an algorithm that will help to set the risk attitude
arbitrarily, finding a solution, when it is possible; and finding
an ε-extreme risk optimal solution otherwise.

The paper is organized as follows, in sections II and III
we present an explanation about Markov Decision Processes
and Risk Sensitive Markov Decision Processes. In section
IV we present our algorithm. Finally in sections V, VI and
VII, we present the related work, experiments and conclusion,
respectively.

II. GOAL-DIRECTED MARKOV DECISION PROCESS

A Goal-Directed MDP [5], [6] (GD-MDP)is as a tuple
MDP = 〈S,A, T, c,G, 〉 where:

• S is a set of states;
• A is a set of actions that can be performed at each period

of decision t ∈ {0, 1, 2, . . .};
• T : S × A × S → [0, 1] is a transition function that

represents the probability of the system transits to a state
s′ ∈ S after the agent executes an action a ∈ A in a state
s ∈ S, i.e., P (st+1 = s′|st = s, at = a) = T (s, a, s′);

• c : S × A → R+ is a cost function that represents the
cost of taking an action a ∈ A when the process is in a
state s ∈ S, i.e., ct = c(st, at); and

• G ∈ S is a set of absorbing goal states, i.e., P (st+1 ∈
G|st ∈ G, at = a) = 1 and c(st ∈ G, at = a) = 0 for
any a ∈ A.

The GD-MDP problem defines a discrete dynamic process.
At any time t, the agent observes a state st, executes an action
at, transits to a state st+1 following T and pays a cost ct. The
process ends after reaching any goal state in G.

The solution to GD-MDPs is a stationary policy defined by
π : S → A. The set of stationary policies is represented by Π.
A policy gives the action to execute at any time t, i.e., if the
process is in the state st, then action at = π(st) is executed.
The execution of a policy and the dynamic of a process defines
a random variable Cπ which stands for total cost for policy π
and is defined by:

Cπ = lim
M→∞

M∑
t=0

ct = lim
M→∞

M∑
t=0

c(st, π(st)).

To find an optimal policy, a utility function u : R+ → R must
be defined and a value function of a policy, V π . The value of
a policy π at state s is given by the expected utility [7]:

V π(s) = E[u(Cπ)|s0 = s].

A policy π∗ is optimal if and only if V π
∗
(s) ≤ V π(s) for

every policy π ∈ Π and every state s ∈ S . In this paper, we
will focus on GD-MDPs.



A. Attitudes Regarding to Risk

Since Cπ is a random variable, we may consider three
general attitudes regarding to risk [7]: neutral, prone and
averse. First, we need to define the certainty equivalent of a
policy π. Intuitively a certainty equivalent is a guaranteed cost
that the agent would prefer to pay, rather than taking a chance
on a lower, but uncertain cost. If V π(s) <∞ and there exists
the inverse function u−1 : R → R+, the certainty equivalent
C
π
(s) of a policy π is defined by:

C
π
(s) = u−1(V π(s)),

and the expected cost C̃π(s) of a policy π is defined by:

C̃π(s) = E[Cπ|s0 = s].

An agent is risk prone if C
π
(s) < C̃π(s), risk averse if

C
π
(s) > C̃π(s) and risk neutral C

π
(s) = C̃π(s) for every

state s ∈ S and policy π ∈ Π. For example, a risk averse
agent prefers to pay for sure a cost of C

π
(s) even when it is

expected to pay less if the process is followed.
In sections II-B and III, we describe the utility function used

by GD-MDPs and Goal-Directed Risk-Sensitive MDPs (GD-
RSMDPs), respectively. The first one considers the identity
function as utility function, i.e., u(x) = x, characterizing a
neutral attitude; whereas the latter considers an exponential
function, i.e., u(x) = −sgn(λ) exp(λx) where sgn and exp
are the signum and exponential function, respectively. GD-
RSMDPs characterizes a risk-prone agent if λ < 0 and a risk-
averse agent if λ > 0.

B. A GD-MDP Solution

A GD-MDP evaluates a policy π by considering the identity
utility function u(x) = x and usually defines the value
function by:

V π(s) = lim
M→∞

E

[
M∑
t=0

c(st, π(st))

]
,

which can be found by solving the following system of
equations:

V π(s) = c(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)V π(s′),∀s ∈ S, (1)

or in its vector-matrix form:

Vπ = cπ + TπVπ, (2)

where Vπ is a |S| × 1 column vector, and cπ and Tπ are
defined bellow.

Definition 1: (Policy Transition Matrices and Policy Cost
Vector) Let π be a stationary policy and an enumeration of
every state in S as 1, 2, 3, . . . , |S|. Tπ is the |S|× |S| matrix,
where each cell (Tπ)ij represents the transition probability
from state i to state j when following policy π, i.e., (Tπ)ij =
T (i, π(i), j). The |S|×|S| matrix Tπ

Gc is the matrix Tπ where
columns representing states in set G are set to 0, i.e.,

(Tπ
Gc)ij =

{
0 , if j ∈ G
T (i, π(i), j) , otherwise .

cπ is the |S| × 1 column vector, where each cell (cπ)i is
the cost when following the policy π in state i, i.e., (cπ)i =
c(i, π(i)).

Definition 2: (Proper policy) A policy π is proper if
limt→∞(Tπ

Gc)t = 0, i.e., an absorbing state in G is reached
with probability 1. Equivalently, a policy π is a proper policy
if the spectral radius of Tπ

Gc is less than 1, i.e., ρ(Tπ
Gc) < 1.

Policy Iteration (PI) (Algorithm 1) is one of the classical
algorithms to find an optimal policy π∗ [1] . It is an iterative
algorithm that begins with an initial proper policy π0 and
at each iteration i executes two steps: policy evaluation and
policy improvement. Policy evaluation step uses Equation 1
to compute the value of V πi(·) and policy improvement step
improves πi obtaining πi+1.

Algorithm 1 Policy Iteration for GD-MDP
Require: An MDP
Ensure: Optimal policy π

1: Choose an initial proper policy π0 arbitrarily
2: i← 0
3: while πi 6= πi−1 do
4: Policy evaluation: obtain the value of the current

policy πi for every s ∈ S by solving the system of
equations in Equation 1.

5: Policy Improvement: improve the current policy by
doing the following update for every s ∈ S:

πi+1(s)← arg min
a∈A

[
c(s, a) +

∑
s′∈S

T (s, a, s′)V πi(s′)

]
.

6: i← i+ 1

If π0 is a proper policy, PI algorithm finds an optimal policy
[5].

C. Using the Discount Factor to Ensure the Existence of
Optimal Policies

A common trick to ensure the existence of optimal policies
and the convergence of Policy Iteration algorithm is to consider
a discount factor γ < 1. In this case equation 2 becomes
Vπ = cπ + γTπVπ . Besides being a mathematical trick, the
discount factor can be used in two ways: (i) Mode 1: as a
discount in the future cost, or (ii) Mode 2: as a chance of being
alive for another step, that is equivalent to reaching a goal
state. If this last meaning is taking into account, the condition
for the existence of an optimal policy becomes ρ(γTπ

Gc) < 1,
which is always true when γ < 1 since ρ(γTπ

Gc) = γρ(Tπ
Gc)

and ρ(Tπ
Gc) ≤ 1.

Finally, if the cost is constant for any state not in the goal
set G, we can show that the optimal policy is optimal under a
utility function given by [3]:

u(Cπ) = −sgn(ln(γ)) exp(ln(γ)Cπ)

which is risk prone if γ < 1, but is risk averse if we allow
γ > 1.



III. GOAL-DIRECTED RISK SENSITIVE MARKOV
DECISION PROCESS

A GD-RSMDPs [8] is defined by the tuple RSMDP =
〈MDP, λ〉 where MDP is a GD-MDP and λ is the risk-
attitude factor. GD-RSMDPs consider the utility function:

u(x) = −sgn(λ) exp(λx),

and model arbitrary risk attitude by considering a risk-attitude
factor λ. If λ < 0 the agent considers a risk-prone attitude,
if λ > 0 the agent considers a risk-averse attitude and in the
limit if λ→ 0 the agent considers a risk-neutral attitude [9].

In GD-RSMDPs, the value function of a policy π is defined
by:

V π(s0) = lim
M→∞

E

[
−sgn(λ) exp

(
λ

M∑
t=0

c (st, π(st))

)]
,

Similar to GD-MDPs, the value of a policy π can be calculated
by solving the following system of equations:

V π(s) =


−sgn(λ), if s ∈ G
exp(λc(s, π(s)))

∑
s′∈S

T (s, π(s), s′)V π(s′),

otherwise
(3)

or in its vector-matrix form:

Vπ = (Dπ)λ(Tπ
GcVπ − sgn(λ)(1−Tπ

Gc1)), (4)

where 1 is a column vector with ones and Dπ is a |S| × |S|
diagonal matrix with elements in exp(cπ). Matrices Vπ , cπ ,
and Tπ

Gc were previously defined.
Definition 3: (λ-feasible policy) A policy π is λ-feasible

if the probability of not being in an absorbing state van-
ishes faster than the exponential accumulated cost, i.e.,
limt→∞((Dπ)λTπ

Gc)t = 0. Equivalently, a policy π is λ-
feasible if the spectral radius of (Dπ)λTπ

Gc is less than 1,
i.e., ρ((Dπ)λTπ

Gc) < 1 [4].
Similar to GD-MDP, there is also a Policy Iteration algo-

rithm for GD-RSMDPs [4] (Algorithm 2).

Algorithm 2 Policy Iteration algorithm for GD-RSMDPs
Require: A RSMDP
Ensure: Optimal policy π and the respective λ

1: Choose an initial λ-feasible policy π0 arbitrarily
2: i← 0
3: while πi 6= πi−1 do
4: Policy evaluation: obtain the value of the current

policy πi for every s ∈ S solving the system of equations
in Equation 3.

5: Policy Improvement: improve the current policy by
doing the following update for every s ∈ S

πi+1(s)← arg min
a∈A

[
exp(λc(s, a))

∑
s′∈S

T (s, a, s′)V πi(s′)

]
6: i← i+ 1

If there exists an optimal policy and π0 is a λ-feasible
policy, PI algorithm finds an optimal policy [4]. When λ < 0
(risk prone) and the policy π is proper, then π is also λ-
feasible. However, this is not guaranteed for all policies when
λ > 0 (risk averse). Given a GD-RSMDP, no result exists on
how to determine the set of λ > 0 such that exists a λ-feasible
policy.

In the next section, we show how to obtain a stationary
extreme risk-averse policy for GD-MDPs with discount factor
γ > 1 and for GD-RSMDP with risk factor λ > 0.

IV. EXTREME RISK-AVERSE ALGORITHM

Although GD-RSMDPs allow modeling risk attitude, there
is no work in the literature that explains how to set a risk-
averse attitude appropriately. In this section, given a risk-
averse attitude (modeled by the factor λ > 0 in a GD-RSMDP
or factor γ > 1 in a GD-MDP), we would like algorithms to
determine if there exists an optimal policy for such attitude.
If there exists, the algorithm would find the optimal policy,
and if there not exists, the algorithm would find the highest
risk-averse policy. Those problems are defined bellow as the
problem of founding γ-Extreme Risk-Averse Policy or λ-
Extreme Risk-Averse Policy.

Definition 4: (γ-Extreme Risk-Averse Policy) Given any
policy π, we can find an extreme value γπ such that:

ρ(γπTπ
Gc) = 1

Then, the γ-Extreme Risk-Averse Policy is given by:

πγ
>

= arg max
π∈Π

γπ.

Definition 5: (λ-Extreme Risk-Averse Policy) Given any
policy π, we can find an extreme value λπ such that:

ρ((Dπ)λ
π

Tπ
Gc) = 1.

Then, the λ-Extreme Risk-Averse Policy is given by:

πλ
>

= arg max
π∈Π

λπ.

We present two algorithms, one for GD-MDP and other for
GD-RSMDP; both algorithms depend on a parameter ε which
represents the precision.

A. Algorithm for GD-MDP with γ > 1

Given a policy π it is possible calculate γπ as in Definition 4
by:

ρ(γπTπ
Gc) = γπρ(Tπ

Gc) = 1⇒ γπ =
1

ρ(Tπ
Gc)

.

Regarding π, we can formulate the following two opposite
hypotheses: (i) π = πγ

>
, and (ii) π 6= πγ

>
. If the second

hypothesis is true, there exists some ε > 0 such that when we
use γπ,ε = 1−ε

ρ(TπGc ) , we found an optimal policy π∗γπ,ε , where

π∗γπ,ε 6= π and γπ < γπ
∗
γπ,ε , i.e., π∗γπ,ε is γ-extremer than π.

Although we cannot define which ε will satisfy the condition
to find an extremer policy, given a fixed value for ε, we can



improve γ while it is possible. We propose the following steps
to find an approximated γ-extreme policy: (i) choose an initial
policy, (ii) calculate a discount factor γ, (iii) evaluate such a
policy; and (iv) improve on it. The last three steps are repeated
until a better policy cannot be found (see Algorithm 3).

Algorithm 3 Policy Iteration for GD-MDP with γ > 1

Require: (MDP, ε)
Ensure: Optimal policy π and the respective γ

1: Choose an initial policy π0 arbitrarily
2: i← 0
3: while πi 6= πi−1 do
4: Update discount factor:

γ ← (1− ε)
ρ(Tπi)

5: Policy evaluation: obtain the value within the current
policy πi for every s ∈ S solving the following system of
equations:

V πi(s) = c(s, πi(s))+γ
∑
s′∈S

T (s, πi(s), s
′)V πi(s′),∀s ∈ S

6: Policy Improvement: improve the current policy by
doing the following update for every s ∈ S:

πi+1(s)← arg min
a∈A

[
c(s, a) + γ

∑
s′∈S

T (s, a, s′)V πi(s′)

]
7: i← i+ 1

B. Algorithm for GD-RSMDP with Risk Averse (λ < 0)

By following the same procedure in the previous section,
given a policy π we must find λπ,ε that solves:

ρ((Dπ)λ
π,ε

Tπ
Gc) = 1− ε,

however, we cannot solve it analytically. Then, we consider a
search procedure to find λπ,ε.

Consider that λπ,ε = λ0 + δ0, where λ0 is an initial guess
and δ0 is a positive variation in λ0, we have:

ρ((Dπ)λ0+δ0Tπ
Gc) = ρ((Dπ)λ0(Dπ)δ0Tπ

Gc)
≤ ρ((Dπ)δ0)ρ((Dπ)λ0Tπ

Gc)
= maxs∈S exp(δ0c(s))ρ((Dπ)λ0Tπ

Gc)

consider the following equality:

max
s∈S

exp(δ0c(s))ρ((Dπ)λ0Tπ
Gc) = (1− ε1)

and take the logarithm on both sides of the equation, we have:

maxs∈S δ0c(s) = ln(1− ε1)− lnρ((Dπ)λ0Tπ
Gc)

δ0 =
ln(1− ε1)− lnρ((Dπ)λ0Tπ

Gc)

maxs∈S c(s)
.

Let λi = λi−1 + δi−1 and set:

δi =
ln(1− ε1)− lnρ((Dπ)λiTπ

Gc)

maxs∈S c(s)
.

then, we guarantee δi > 0 and that:

ρ((Dπ)λi+δiTπ
Gc) ≤ ρ((Dπ)λi+1+δi+1Tπ

Gc) ≤ 1− ε,

for all i ≥ 0.
Given parameter β > ε, we propose the following steps

to find an approximated λ-extreme policy: (i) choose an
initial λ < 1 and arbitrarily policy, (ii) updates λ while
ρ((Dπ)λTπ

Gc) < 1 − β, (iii) evaluate such a policy; and (iv)
improve on it. The last three steps is repeated until a better
policy cannot be found (see Algorithm 4).

Algorithm 4 Policy Iteration for GD-RSMDP with Risk
Averse
Require: RSMDP ,ε,β)
Ensure: Optimal policy π and the respective λ

1: Choose an initial policy π0 arbitrarily
2: i← 0
3: while πi 6= πi−1 do
4: while ρ((Dπ)λTπ

Gc) ≥ (1− β) do
5: Update the risk-attitude factor:

λ← λ+
ln(1− ε)− lnρ((Dπ)λTπ

Gc)

maxs∈S c(s)

6: Policy evaluation: obtain the value of the current
policy πi for every s ∈ S solving the system of equations
in Equation 3.

7: Policy Improvement: improve the current policy by
doing the following update for every s ∈ S

πi+1(s)← arg min
a∈A

[
exp(λc(s, a))

∑
s′∈S

T (s, a, s′)V πi(s′)

]
8: i← i+ 1

The algorithm does not stop if and only if there is a policy
whose trajectories’ lengh is less than a constant, i.e., exists
τ < ∞ such that (Tπ

Gc)τ = 0. However, this case is difficult
to happen. In general, stochastic problems will always present
some chance of taking one more step to accomplished a task,
or, if there is a deterministic path, it rarely will be long.

V. RELATED WORK

For solving risk-sensitive sequential decision problems, the
objective is to maximize a risk-sensitive criterion such as:
(i) expected exponential utility [8], [10], [11], [12], [4], (ii)
variance-related measure [13], [14], (iii) percentil performance
[15], or (iv) the probability that the cumulative cost is within
some threshold [16], [17], [18]. In this work, we consider an
expected exponential utility as a risk-sensitive criterion and
as [4] we concentrate on risk aversion in Goal Directed Risk-
Sensitive Markov Decision Process. [4] has already proved the
conditions for the existence of a valid policy for this model.
The contribution of our work is show how to build one valid
policy and what is the maximum value for the risk factor.

An MDP where the objective is to maximize the criterion
(iv) was recently revisited in the area of Planing in Artificial



Intelligence. In this model the objective is to find a policy
that maximizes the probability that the cumulative cost of the
policy is less or equal than some user-defined cost threshold
[16]. In [16] a Value Iteration algorithm to solve this problem
was introduced and the model was revisited by [17] for
Goal-Directed MDPs. New algorithms that are faster than the
Value Iteration algorithm proposed before were introduced in
[17]. The same model with imperfect state information was
addressed in [18]. In this work we also consider Goal-Directed
MDPs as [17], however as we said before, we work with a
different risk sensitive criterion.

In the area of reinforcement learning there are some works
that consider expected exponential utility criterion [19], [20]
and variance-related risk measure [21], [22]. Our algorithms
work only when the model is known, i.e., we do not deal with
reinforcement learning problems.

VI. EXPERIMENTS

A. Driving License [3]

This scenario describes a candidate that wants to take his
driving license, and he has two choices: take lessons or do the
practical exam. However, the more lesson he takes, the greater
is the chance to pass in the practical exam. The candidate
wants to minimize his cost to take the driving license. The
question for this problem is: how many hours of lessons he
must take before taking the practical exam? The candidate
pays a cost of $2 for each practical exam and the cost to
have lessons is $1. The candidate can take at most 4 hours of
lessons before each practical exam and can only accumulates
a maximum of 10 hours of experience. The chance of being
approved in the practical exam depends on the previous
accumulated experience (x) and current number of lessons
taken (y). The function that returns the probability to being
approved in the practical exam is: p(x, y) = 0.08x+ 0.04y.

To model this scenario, we use a GD-RSMDP with 11 states
and 5 actions. The states {0, 1, ..., 10} keep information of the
number of hours accumulated before the current lessons and a
goal state sG which represents that the agent has been aproved.
The actions {0, 1, ..., 4} show the number of lessons to take
before each practical exam. The cost function for any state
s 6= sG is given by c(s, a) = 2 + a. The transition function
for any state s 6= sG is given by:

T (s, a, s′) =

 0.08s+ 0.4a , if s′ = sG
1− (0.08s+ 0.4a) , if s′ = min{s+ a, 10}
0 , otherwise

.

B. Values of γ updated by PI Algorithm for GD-MDP (γ > 1)

Figure 1 shows the values of γ at each iteration of the PI
Algorithm for GD-MDP with γ > 1. The initial policy was
the worst possible, i.e. do not do any lesson. In this case
it was adopted γ0 = 0.99 and ε = 0.01. Note that, it is
not necessary an initial proper policy. The algorithm returns
the greatest value for γ, that was log(24.75)=3.2088 and the
optimal policy 12. Although GD-MDP with γ > 1 are not
risk-averse in general, the algorithm returns the most averse
one, i.e., policy 12.
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Fig. 1. Example of the execution o PI algorithm for MDP with γ > 1 in the
driving license scenario.

C. Values of λ updated by PI Algorithm for GD-RSMDP with
Risk Averse

Figure 2 shows the values of λ at each iteration of PI
Algorithm for GD-RSMDP with Risk Averse. The initial
policy was also the worst possible. In this case, it was adopted
λ0 = −0.1, ε = 0.001 and β = 0.0010000001. Note that,
for this algorithm it is not necessary a λ-feasible policy. The
algorithm takes 221 iterations and returns the greatest value
for λ that was 0.8042 and the optimal policy 6.
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Fig. 2. Example of the execution of PI algorithm for GD-RSMDP with Risk
Averse in the driving license scenario.

D. Behavior of Policies when λ gets Close to its Limit

To corroborate our results with the algorithm for GD-
RSMDP with Risk Averse, we test systematically from riskier
to safer policies. Table I shows each tested policy. For exam-
ple, in policy 12, the action is to take the maximum number
of hours of lesson permitted, i.e., 4 hours, for any state. This
policy is the safest policy.

Figure 3 shows the certainty value of each policy for
different values of the risk factor λ. We can see that each
plateau in Figure 2 represents the limit for some policies in
Figure 3, i.e., the maximum value of λ in both figures is also



the same. Figure 3 also shows the value goes to infinite when
λ gets close to its limit, this is the typical behavior of policies.
There are policies that are extremely risk averse, that are not
optimal for any value of λ. For example, policies 7, 8, 9, 10,
11, 12 are never optimal.

TABLE I
EXAMPLES OF POLICIES FOR THE DRIVING LICENSE SCENARIO.

Policy States 0 1 2 3 4 5 6 7 8 9 10
Policy 1 4 4 3 2 1 0 0 0 0 0 0
Policy 2 4 4 4 3 2 1 0 0 0 0 0
Policy 3 4 4 4 4 3 2 1 0 0 0 0
Policy 4 4 4 4 4 4 3 2 1 0 0 0
Policy 5 4 4 4 4 4 4 3 2 1 0 0
Policy 6 4 4 4 4 4 4 4 3 2 1 0
Policy 7 4 4 4 4 4 4 4 4 3 2 1
Policy 8 4 4 4 4 4 4 4 4 4 3 2
Policy 9 4 4 4 4 4 4 4 4 4 3 1
Policy 10 4 4 4 4 4 4 4 4 4 3 2
Policy 11 4 4 4 4 4 4 4 4 4 4 3
Policy 12 4 4 4 4 4 4 4 4 4 4 4
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Fig. 3. The value of the 12 policies showed in Table I for different λ risk
averse.

VII. CONCLUSION

We have proposed two versions of the PI algorithm, one
for MDP with γ > 1 and one for GD-RSMDP with risk-
averse. For the first one, it is no longer necessary an initial
proper policy. For the second, it is no longer necessary an
initial λ-feasible policy and now we can use any risk-averse
attitude, i.e. any lambda value. In this case the algorithm can
find the optimal policy if it exists, otherwise, the algorithm
returs the highest feasible risk-averse policy. Both of the
proposed algorithms depend on a parameter ε that guides
the precision to which the task is accomplished. Note that,
although the algorithm converges in general, the algorithm
does not converge for the most risk averse feasible policy.
However, we believe it does in most real problems.

A direction for future research is to consider the distribution
for the initial state. It is possible that some initial states do not
converge or converge slowly to optimal policies, but after an

appropriate choice of λ they are never met after all feasible
initial states. In this case, if we discard these states we can
have policies with higher values of λ.
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