
Solving Atomix with Pattern Databases
Alex Gliesch and Marcus Ritt

Instituto de Informática
Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil
Email: {azgliesch, marcus.ritt}@inf.ufrgs.br

Abstract—In this paper we study the application of pattern
databases (PDBs) to optimally solving Atomix. Atomix is a
puzzle, where one has to assemble a molecule from atoms by
sliding moves. It is particularly challenging, because the slides
makes it hard to create admissible heuristics, and state-of-the-
art heuristics are rather uninformed. A pattern database (PDB)
stores solutions to an abstract version of a state space problem.
An admissible lower bound for a given state is obtained by
decomposing it into abstract states and combining their pre-
computed solutions. Different from other puzzles a pattern in
Atomix cannot be simply obtained by omitting pieces from the
puzzle. We also study the search algorithm Partial Expansion
A∗’s application to Atomix, as a reduced-memory alternative to
A∗. Experiments show our method solves more instances and
significantly improves current lower bounds, running times and
node expansions compared to the best solution in the literature.

I. INTRODUCTION

Atomix is a single player game developed by Günter Krämer
and published by Thalion Software in the 1990s [1]. Atomix
is PSPACE-complete [2]. The game takes place on an integer
board of size w×h, on which are distributed n pieces, called
atoms. Some board positions are walls through which no atom
can pass. Each atom is identified by a label, and multiple atoms
have the same label.

Atoms can be moved with sliding operations. When an atom
is slid in a direction (up, down, left, right), it will move in
that direction until hitting an obstacle, which can be a wall
or another atom: the atom will then stop at the position just
before the obstacle. When sliding, an atom may not stop at
any intermediate position between its initial position and its
stopping position.

The goal of the game is to assemble the atoms into a specific
formation called molecule, which is given in the problem
statement. There is no restriction on where on the board the
molecule must be assembled, as long as the relative positions
between the atoms are as required. The molecule may not
be mirrored or rotated, and always contains all atoms. Note
that atoms that have the same label may have their positions
interchanged in the final molecule. In this paper, we are
interested in the problem of assembling the final molecule
using the minimum number of moves mossible.

A game instance defines the board layout (walls, free
positions), the number of atoms and their types, the molecule
to be assembled, and the initial position of every atom. Figure
1 shows a typical Atomix instance.

A B C D E F G H
1
2 H1

3 H1 N H2

4 H3

5 H3

6 N H2

7

Fig. 1. An example instance. The goal of this instance is to assemble the
molecule ammonia, on the right. Gray squares represent walls, and white space
represents free positions. The line-patterned squares denote the two possible
goal positions of the molecule. The atom label is formed by both the atom
type (hydrogen, nitrogen, etc.) and the orientation of its links. In this instance,
all atoms are uniquely labeled.

A. Formal definition

An Atomix instance can be represented formally by a tuple
(W,L, s0, F), where W ∈ {0, 1}wh is a boolean matrix such
that Wij = 1 iff the position (i, j) on the board is a wall,
L ⊂ N is the set of atom labels, s0 is the initial game state,
and F is a set of goal states.

A game state s is a set of pairs (pi, li), i ∈ [n], where
pi ∈ N2 is the board position of an atom with label li ∈ L.
We denote by S ⊆ N2×L the set of all possible game states.
A board position p is said to be empty in state s if Wp = 0 and
(p, l) 6∈ s,∀l ∈ L. A position (r, c) 6∈ [w] × [h] is said to be
out of bounds. A direction is a coordinate d ∈ D, where D =
{(0, 1), (0,−1), (1, 0), (−1, 0)} is the set of all directions.

A move is a function move : N2×L×D×S → S that, when
applied on an atom (p, l), direction d and state s, yields a state
s′ = s\{(p, l)}∪{(p′, l)}, where p′ is the first position p+δd
such that p+δ′d is empty in s for δ′ ∈ [0, δ] and p+(δ+1)d is
not empty. If either (p, l) 6∈ s or p′ is out of bounds the move
yields s itself. The neighborhood of a given state s is the set
of states N(s) = {move(p, l, d, s) | d ∈ D, (p, l) ∈ s} \ {s}.

The distance between two states s and s′ is the minimum
number of moves necessary to transform s into s′. The goal of
the game is to find the minimum distance between the origin
state s0 and any goal state in F .

B. Previous work on Atomix

Hüffner et al. [1] use A∗ and IDA∗ to solve Atomix. They
propose an admissible lower bound based on relaxed atom
moves called generalized moves. A generalized move allows
atoms to stop at any free space in a given direction, instead of

A B C D E F G H
1
2 N2

3 H1 N1 H1 N1 N2 H2

4 H3 H3

5
6 H3

7 H2 H3

8

Fig. 2. Example of the computation of the generalized moves heuristic. The
generalized distances are: 2 for H1, 3 for H2, 2 for N1, 3 for N2. Notice
that both H3 have the same label. The possible matchings are {E6–C3, G7–
D3} of cost 3 + 2 = 5, and {E6–D3, G7–C3} of cost 4 + 2 = 6. The
first matching has the minimum cost of 5, thus the final heuristic value is
3 + 2 + 2 + 3 + 5 = 15.

only at the position just before an obstacle. It also allows for
more than one atom to occupy the same space. The generalized
distance between two positions is the minimum number of
generalized moves to move an atom from one position to the
other. The lower bound for a state s with respect to a goal state
f is the sum of generalized distances of every atom position
in s to the corresponding goal position of that atom in f . The
generalized distance can be pre-computed for every possible
pair of board positions by performing an all-pairs-shortest-
paths algorithm on the underlying graph. The paper also proves
that this heuristic is admissible and consistent.

If there are multiple atoms with the same label, there exists
more than one way to bring these atoms to their goal positions.
In order to achieve this efficiently, a minimum cost perfect
matching is performed on the bipartite graph induced by the
generalized distances between the atoms in s and the atoms
in f . This problem can be solved in O(n3) [3]. A similar
idea is used in the standard heuristic for Sokoban Junghanns
and Schaeffer [4], where the stones must be matched to their
goal positions. Figure 2 illustrates the computation of the
generalized moves heuristic.

Hüffner et al. deal with multiple goal states in by an iterative
deepening strategy similar to IDA∗: for an increasing upper
bound on the f -values, it applies a depth-first search for each
goal state. Alternatively, the search can be an A∗ search. The
latter case has the useful property that it will not generate
any states with f -value greater than the optimal solution
length, because it discards states with f -value greater than
the upper bound, and thus reduces A∗’s memory consumption
considerably.

The paper also uses the fact that the generalized moves
heuristic is monotone to propose an efficient open list data
structure for A∗, which is several times faster than standard
implementations of priority queues. The disadvantage of this
approach is that it disallows tie-breaking rules to assign further
priority to states with the same f -value.

C. Contributions of this paper

In this paper, we propose a different way of handling
multiple goal states through a modified generalized moves

heuristic. We also present three new heuristics based on
additive pattern databases, which improve the state-of-the-art
lower bounds achieved by the generalized moves heuristic.

Lastly, we compare the iterative deepening strategy used
by Hüffner et al. [1] with a regular A∗ and the reduced
memory approach Partial Expansion A∗ (PEA∗) [5]. We show
that PEA∗, as a compromise between speed and memory
consumption, is able to reduce the number of stored states
significantly, as opposed to A∗, and is more efficient than the
approach using iterative deepening.

The remainder of this paper is organized as follows: in
Sections II, III and IV we describe our proposed approaches
on multiple goal states, pattern databases and search algorithm,
respectively. In Section V we present the computational results
of our approaches and compare them with the implementation
by Hüffner et al. [1]. We conclude in Section VI.

II. HANDLING MULTIPLE GOAL STATES

A simple strategy would be to run an independent search
for each goal state, and return the best solution. However,
because there is no guarantee that a specific goal state is
even reachable, some searches might run until the state space
is exhausted. Hüffner et al. [1] solve this by an iterative
deepening approach, as discussed above. This method expands
every state with an f -value at most the optimal distance
once for every goal state and upper bound, but not more
than a factor of the problem’s effective branching factor [6],
compared to a direct approach.

Another possible strategy would be to run A∗ searches for
each goal state in a round-robin fashion, and expand a fixed
number of states each time. When a solution is found, the
corresponding search stops, and all other searches become
bounded to f -values less than that solution’s length. The algo-
rithm terminates when all searches stop. The major downside
of this approach that is consumes much more memory, since
a separate open and closed list must be kept for each search.

Both strategies above expand the same state several times.
To solve this problem, we propose to run a single search
(either A∗ or IDA∗) guided by all goal states. This means
that any admissible heuristic must be a lower bound on the
minimum distance of the current state to any of the goal states.
Generalized moves can be easily modified to satisfy this, by
returning the minimum sum of generalized distances among
all goal states.

The main advantage of the strategy that considers all goal
states is that a single A∗ search is enough to find an optimal
solution, if it exists. If the heuristic is consistent, states will
be expanded only once. Clearly, the heuristic is less informed,
but we will show in Section V that this strategy reduces the
number of state expansions by a factor of two.

III. PATTERN DATABASES

Pattern Databases (PDBs) [7], are one a powerful way to
create admissible heuristics. They have been widely used to
solve benchmark problems such as the (n2 − 1)-puzzle [7],
Sokoban [8], Rubik’s Cube [9].

PDBs use an abstraction to reduce the state space problem
to a problem with a smaller, abstract state space. The optimal
solution of the abstract problem is stored in a look-up table
called a PDB, and is used as a heuristic function for the orig-
inal problem. The abstract state space must be small enough
so that it can be exhaustively explored in feasible time and
its solution values stored in the PDB. In sliding block puzzles
this is normally done by removing some pieces and solving the
original puzzle with the remaining pieces (called a pattern). In
the abstracted problem, a state is identified exclusively by the
positions of the pieces. A PDB is constructed by visiting all
reachable abstract states with a backward breadth-first search
(BFS), starting from the abstract goal state, and storing the
distance to every other abstract state.

Of particular interest are disjoint pattern databases [10]. In
sliding block puzzles, two PDBs are disjoint if their pieces
are disjoint. The advantage of disjoint PDBs is that the sum
of their heuristic values is an admissible heuristic, whereas
non-disjoint PDBs must be combined by taking the maximum
among them. In a statically-partitioned PDB, the patterns
are predefined before the PDB is built. In a dynamically-
partitioned PDB, a PDB is built for every possible pattern,
and the partition is performed at run time, so as to choose the
partition that maximizes the sum of the contributions of each
disjoint set [11].

A. Constructing PDBs for Atomix

In Atomix, we cannot simply remove a subset of atoms to
create a simpler pattern: a heuristic that only removes atoms
is not admissible, since sliding atoms may need support from
other atoms to reach certain positions. For example, when we
remove all atoms except N2 in Figure 2, N2 cannot reach
its goal any more. We call this kind of interaction a positive
interaction, since the presence of an atom may shorten the
distance to the goals of other atoms. Similarly to other block-
moving puzzles, there are also negative interactions, where an
atom blocks the optimal path of other atoms.

Atomix with the generalized moves relaxation is still too
difficult to be solved completely and stored in a PDB. How-
ever, in this variant, atoms do not need interactions to achieve
an optimal path from their initial to their goal positions,
meaning an abstraction that removes atoms is still admissible,
enabling us to build admissible additive PDBs on disjoint
subsets of atoms. Because it is a relaxation of standard Atomix,
any heuristic for generalized Atomix is also admissible for
standard Atomix.

We define an atom pattern T as a multiset of atom labels.
An abstract state is a state having one atom with label l for
every l ∈ T . The neighbourhood of an abstract state is the set
of all state obtained by generalized moves of its atoms. Given
a partition of the n atoms into disjoint patterns, a PDB for a
goal state f is constructed as follows. For every pattern, we
perform a backward BFS starting from the set of abstract states
that comprise all possible assignment of the pattern’s atoms to
their positions in f . If an atom in T has multiple goal positions
(because there exist more atoms with the same label), there

may be more than one possible assignment. The BFS visits all
possible abstract states of that pattern, and, for every abstract
state, stores in the PDB look-up table the minimum number
of movements needed to reach it.

In essence, the PDB we propose is a generalized moves
heuristic that also captures negative interactions between
atoms in the same pattern. A particular type of negative
interactions are linear conflicts Hansson et al. [12], which
happen when the optimal generalized paths of two atoms meet
in opposite directions. Note that if all patterns have size 1 (each
atom is in its own pattern) the PDB heuristic is the same as
the generalized moves heuristic.

Although capturing interactions helps increase the lower
bounds, the heuristic value is upper-bounded by the solution
to generalized Atomix. In particular it abstracts the sliding
moves, which contributes significantly to the number of moves
to solve Atomix.

B. A statically-partitioned disjoint PDB

A statically-partitioned PDB of size k will, in a pre-
computing step, partition the n atoms into bn/kc patterns of
size k and, for each pattern, calculate and store the optimal
solution of the abstract problem for all possible configurations.
If n is not divisible by k, a PDB of size n mod k is
constructed for the remaining atoms. We build a PDB for each
goal state.

For an abstract state, the heuristic value to some goal state
is the sum of the distances of all (disjoint) abstract states
to the corresponding abstract goal state, and the heuristic
value of a state is the minimal heuristic value over all goal
states. It can be obtained in time O(|F | dn/ke), and occupies
O(|F | bn/kcmk) memory: for each goal state, and for each
pattern, we store all possible distributions of the k atoms over
the m board positions. Considering current memory sizes, and
that we store the PDB’s lower bound in one a single byte, a
statically-partitioned PDB is only applicable for k ≤ 3: the
maximum memory usage, on all instances, would be 193 MiB
(case k = 4 would need 17971MiB).

Since the static partition will stay the same during the
search, selecting a good partition is important: partitions that
capture more linear conflicts are expected to yield better
heuristic values. Figure 3 illustrates this. A good heuristic is to
put atoms that are more likely to interact with each other into
the same part. A simple but effective heuristic is to choose a
partition that minimizes the sum of generalized distances in
the final molecule of atoms within each pattern. We obtain
this partition by a best-improvement multi-start local search,
starting from a random partition, in the neighborhood that
swaps all possible pairs of atoms in different patterns.

Because the memory usage of a statically-partitioned PDB
with k = 3 is rather small, and the calculation of the PDB
is fast, we can afford to have multiple statically-partitioned
PDBs and take the maximum heuristic among them. In our
implementation we use one PDB whose partition is chosen
by local search, as described above, and p other PDBs whose
partitions are selected randomly. The final heuristic value is the

A B C D E F G H I J
1
2 H3

3 H2 O H2

4 H1 C O H4

5 C H1 H3

6 H4

7
8

Fig. 3. The PDB partition {{H2,H3,H4}, {H1,C,O}}, for instance,
captures 4 linear conflicts (H2–H3, H1–C, H1–O, C–O) and gives a lower
bound of 16 (7+9). The partition {{H3,H4,C}, {H1,H2,O}} , however,
captures only one linear conflict (H1–O), and gives a weaker lower bound of
14 (7+7). The generalized moves heuristic gives a lower bound of 12.

maximum among all those PDBs. Empirically, we have found
that generating some partitions randomly leads to better lower
bounds, on average, than selecting them all by local search: a
possible explanation is because this increases the diversity of
atom groupings, and is able to produce better heuristic values
on states which are far from the goal state. Higher values
of p are more likely to yield better heuristics, but will also
occupy more memory and increase the heuristic computation
time. In preliminary tests, we have found p = 5 to be a good
compromise.

C. A dynamically-partitioned PDB

A dynamically-partitioned PDB of size k will, in a pre-
computing step, calculate the abstract solution of all

(
n
k

)
partitions of the n atoms into patterns of size k. Similarly to a
statically-partitioned PDB, |F | dynamically-partitioned PDBs
will be built. For an instance with m free board positions, these
PDBs require O(|F |

(
n
k

)
mk) memory, since each partition has

O(mk) possible configurations. Considering current memory
sizes, only dynamically-partitioned PDB of k ≤ 2 are feasible
to construct: the maximum memory usage on all standard
instances is 24MiB (case k = 3 would need 16527MiB).

The dynamically-partitioned PDB is implemented as a look-
up table d-PDB(f, i, j, pi, pj) that stores the minimum dis-
tance of a pattern with labels i and j in positions pi and pj to
reach their positions in goal state f . The heuristic of a state
s is computed as follows. For every goal state f , we define
a complete graph where each vertex represents an atom, and
two vertices i and j with {(pi, i), (pj , j)} ⊆ s, are connected
by an edge of weight d-PDB(f, i, j, pi, pj). We then compute
a maximum weight perfect matching on this graph, which
defines the pairs of atoms. This matching can be found in
time O(n3) [13]. If the number of atoms is odd, we add a
dummy vertex which connects to every other vertex u with
weight equal to the minimum generalized distance between u
and any of its goal positions in f . This procedure is repeated
for every goal state, and the minimum matching among all
goal states is used as a lower bound. Figure 4 illustrates the
computation of the heuristic.

The major shortcoming of this approach is that a maximum
cost perfect matching must be computed for each node and

H1 H2

H3 N

7

6

3

8

9

5

H1 H2

H3 N

2

4

5

3

5

3

Fig. 4. For the Atomix instance of Fig. 1, the figures below show the
matching for the left-most and right-most goal state, with the edges of a
perfect matching drawn in bold. The lower bound is given by the minimum
matching for all goal states, which is {{H1,H3}, {H2,N}} and has value 10
(5+5).

each goal state. This procedure is significantly more time-
consuming than the generalized moves heuristic or a statically-
partitioned PDB. One way to improve this would be to
store the matched edges together with the state and perform
the matching only once every fixed number of movements;
however, this would effectively double the memory usage of
a state.

Because the dynamically-partitioned PDB always selects,
among all partitions, the one that yields the maximum heuristic
value, it is always an upper bound on a statically-partitioned
PDB for a fixed k. In this paper, however, we use k = 2 for
the dynamically-partitioned PDB and k = 3 for the statically-
partitioned PDB, so this is not necessarily true: a statically-
partitioned PDB may be able to penalize more interactions.

IV. REDUCING THE MEMORY CONSUMPTION OF A∗ /
PARTIAL EXPANSION A∗

As a consequence of Atomix’s large branching factor, we
see a big discrepancy between the amount of states generated
and expanded during an A∗ run. In most instances, over half
of A∗’s state table is filled with states having an f -value
greater than the optimal solution length (f∗). These states
occupy a large amount of space, and, by definition, will never
be expanded. Because our heuristics are relatively fast to
compute, A∗ is able to generate up to hundreds of thousands
of states per second. In practice, the memory limit is typically
reached within a few minutes.

Aiming at reducing the number of states generated in
problems with large branching factors, Yoshizumi et al. [5]
propose a modification to standard A∗ called Partial Expansion
A∗ (PEA∗), which has the property of never adding states with
f > f∗ to the open list. In PEA∗, when a state s is expanded,
all of its child states are generated, but only childs c with
f(c) = f(s) are added to the open list. After this step, if
there are still children of s with f(c) > f(s), f(s) is updated
to be the minimum f among those children, and s is reinserted
in the open list. Felner et al. [14] propose a modification to
PEA∗ for heuristics that are not consistent: instead of adding
to the open list only children with f(c) = f(s), all children
with f(c) ≤ f(s) are added.

In PEA∗, a state can be expanded as many times as there
are different f -values among its children. In each expansion,
we must generate its children, compute their lower bounds,

TABLE I
CHARACTERISTICS OF THE INSTANCES IN OUR STANDARD TESTBED.

Min. Avg. Max.

Number of atoms (n) 3 10.39 32
Goal states 1 5.57 64
Board size 36 146.78 225
Solution length 7 21.56 47
Best known lower bound 7 30.53 65
Effective branching factor 1.12 9.93 34.26
Search space size 17550 8.25× 1047 1.25× 1050

and test if they are already in closed. These operations can
incur a significant time overhead, compared to normal A∗.

In this paper, we have implemented PEA∗ to solve Atomix,
as a reduced-memory alternative to A∗. As we will show in
Section V-C, PEA∗ is able to reduce memory usage by an
order of magnitude, compared to A∗, while also being faster
than the iterative deepening strategy of Hüffner et al. [1].

V. COMPUTATIONAL RESULTS

A. Experimental setup

All experiments were performed on a PC with an AMD FX-
8150 Eight-Core CPU running at 3.6GHz, with 32 GB of main
memory. Each execution was limited to 10GB of memory,
and one hour of computation time. We have implemented
the algorithms in C++, and compiled them with GCC 5.3.1
and maximal optimization. For the maximum weighted perfect
matching, we used the implementation by Kolmogorov [15].
The standard set contains 155 Atomix instances. Table I
summarizes some characteristics of the instances. All summary
statistics are reported over all instances, except the solution
length, which is reported only for the 88 solved instances.

In preliminary tests, we have found the best configuration
of parameters to be the following: PEA∗ with a heuristic
considering all goal states, a statically-partitioned PDB, and
breaking ties by goal count. In the following subsections, we
compare the different methods using this base configuration.

In each table, we report the number of solved instances (“#
solved”), the average relative deviation from the best known
lower bound over all instances (“avg. rel. dev.”), the number
of expanded and opened nodes, and the total solving time in
seconds (“time (s)”). The relative deviation is the average over
all instances, the remaining quantities only over the instances
that have been solved by all variants. Since in PEA∗ not all
generated nodes are put on the open list, we report the number
of generated and opened nodes separately. A node is counted
as opened if it has not been discarded by an f -value limit and
has been added to the open list.

B. Pattern databases

Table II compares the performance of the statically-
partitioned and dynamically-partitioned PDBs, as well as the
version without a PDB which uses the generalized moves
heuristic. It additionally reports the number of instances that
have reached the time or memory limit, the average relative
deviation from the best lower bound of the initial heuristic

TABLE II
COMPARISON OF THE PDB VARIANTS. THE NUMBER OF INSTANCES

SOLVED BY ALL VARIANTS WAS 71.

Static Dynamic No PDB

Solved 82.8 71 77
Time limit reached 52.5 84 25
Memory limit reached 19.7 0 53
Avg. rel. deviation (%) 0.58 1.72 1.47
Avg. initial heuristic (%) 24.04 23.39 26.23
Time (s) 2,952 17,405 3,420
PDB time (s) 647 15,308 0
Nodes expanded (×108) 3.39 2.39 8.72
Nodes opened (×108) 2.49 1.70 6.27

TABLE III
COMPARISON OF THE DIFFERENT SEARCH METHODS. THE NUMBER OF

INSTANCES SOLVED BY ALL VARIANTS WAS 75.

PEA∗ A∗ It. Deep. Strategy

Solved 83 75 80
Avg. rel. deviation (%) 0.62 1.91 0.29
Time (s) 6,381 4,606 7,379
Nodes expanded (×108) 3.99 2.95 9.13
Nodes re-expanded (×108) 3.72 0 0
Nodes opened (×108) 2.92 18.09 15.04
Nodes generated (×108) 45.82 18.09 87.58

value (“avg. initial heuristic”), and the time spent in building
and consulting the PDB including the time for computing the
matchings (“PDB time (s)”). As discussed in Section III-B,
the PDB build time is negligible. Because the performance of
the statically-partitioned PDB depends on random partitions,
we report in this case averages over 10 replications.

We see that the statically-partitioned PDB solved the most
instances, 82.8 on average, having also the best overall perfor-
mance, both in terms of expanded nodes, computation time,
and lower bounds. Although its heuristic is slightly more costly
to compute than the generalized moves, the improved lower
bounds help it expand approximately 2.5 times fewer nodes.

The dynamic PDB solved the least number of instances,
71. It performed even worse than the version without any
PDB. The large running time of this variant is due to the
high cost of performing a maximum perfect matching at every
heuristic call, for every final state: the time used by the PDB
amounts to over 85% of the total running time. Because of
this, the dynamically-partitioned PDB hits the time limit on
all of the unsolved instances. However, it expands the least
amount of nodes, since it has the highest lower bounds. We
expect that, if the time limit is large enough, the reduced
number of expansions of the dynamically-partitioned PDBs
could compensate the time for computing it.

C. Search algorithms

Table III compares A∗, PEA∗, and the iterative deepening
strategy, using A∗. It additionally report the number of re-
expanded nodes. We see that A∗ has solved the least number
of instances, 75. On all unsolved instances, it terminates
reaching the memory limit, in average in 7 minutes. As
expected, considering only the solved instances A∗ has the

TABLE IV
COMPARISON OF OUR SOLVER WITH HÜFFNER ET AL. [1]’S SOLVER. THE

NUMBER OF INSTANCES SOLVED BY BOTH VARIANTS WAS 75.

This work Hüffner et al. [1]

Solved 82.8 75
Avg. rel. deviation (%) 0.56 1.67
Time (s) 9,211 12,962
Nodes expanded (×108) 6.79 47.18
Nodes opened (×108) 5.03 900.15

best performance, being the fastest and expanding the least
number of nodes.

PEA∗ solved the most instances, 83. It uses a factor of 6.2
less memory compared to A∗. The reduction is proportional
to the number of opened nodes. Compared to the iterative
deepening strategy, PEA∗ was 15% faster and expanded over
two times fewer nodes, although the average relative deviation
is higher.

D. Comparison with Hüffner et al. [1]’s solver

Table IV compares the average results of 10 replications of
our solver with the implementation by Hüffner et al. [1] using
the iterative deepening strategy and the A∗ algorithm, under
the same time and memory limits. Hüffner et al. [1]’s code has
been compiled and run in our environment. Hüffner et al. [1]’s
program crashed on the execution of instances kai 20, kai 21
and kai 27, so these instances are not taken into account for
the calculation of the average relative deviation.

We can see that the approach using PDBs is able to solve on
average 7.8 more instances. The number of expanded nodes for
solving an instance is almost an order of magnitude smaller,
and the running time approximately 40% less. It also reduces
the average relative deviation by about 3%.

VI. CONCLUSIONS

In this paper, we have applied pattern databases to cre-
ate admissible heuristics for Atomix that penalize negative
interactions between atoms. We have proposed a statically-
and a dynamically-partitioned PDB, and showed that the
dynamically-partitioned PDB yields stronger lower bounds
leading to fewer node expansions, but requires a substantial
amount of time. On the other hand, the statically-partitioned
PDB offers a middle ground between stronger heuristics and
computational efficiency, achieving better overall results than
the generalized moves heuristic proposed by Hüffner et al. [1].

Furthermore, we have shown that, under the imposed mem-
ory and time limits, A∗ consumes available memory rather
quickly, mostly due to an inexpensive heuristic. Partial Ex-
pansion A∗ mitigates this problem by not storing states with
f -value greater than the solution length.

Lastly, we have compared our experimental results with the
state-of-the-art results by Hüffner et al. [1], and shown that
the proposed method is able to solve an average of 7.8 extra
instances, reducing the number of nodes expanded by an order
of magnitude, and improving current known lower bounds.

REFERENCES

[1] F. Hüffner, S. Edelkamp, H. Fernau, and R. Niedermeier,
“Finding optimal solutions to Atomix,” in KI 2001:
Advances in Artificial Intelligence, 2001, pp. 229–243.

[2] M. Holzer and S. Schwoon, “Assembling molecules in
ATOMIX is hard,” Theor. Comput. Sci., vol. 313, no. 3,
pp. 447–462, 2004.

[3] J. Munkres, “Algorithms for the assignment and trans-
portation problems,” J. Soc. Ind. and Appl. Math., vol. 5,
no. 1, pp. 32–38, 1957.

[4] A. Junghanns and J. Schaeffer, “Sokoban: Enhanc-
ing general single-agent search methods using domain
knowledge,” Artif. Intell., vol. 129, no. 1–2, pp. 219–251,
2001.

[5] T. Yoshizumi, T. Miura, and T. Ishida, “A∗ with par-
tial expansion for large branching factor problems.” in
AAAI/IAAI, 2000, pp. 923–929.

[6] R. E. Korf, “Depth-first iterative-deepening: An optimal
admissible tree search,” Artif. Intell., vol. 27, no. 1, pp.
97–109, 1985.

[7] J. C. Culberson and J. Schaeffer, “Searching with pattern
databases,” in Canadian Conference on Artificial Intelli-
gence, 1996, pp. 402–416.

[8] A. G. Pereira, M. Ritt, and L. S. Buriol, “Finding optimal
solutions to Sokoban using instance dependent pattern
databases,” in Symposium on Combinatorial Search,
2013, pp. 141–148.

[9] R. E. Korf, “Finding optimal solutions to Rubik’s cube
using pattern databases,” in AAAI Conference on Artifi-
cial Intelligence, 1997, pp. 700–705.

[10] R. E. Korf and A. Felner, “Disjoint pattern database
heuristics,” Artif. Intell., vol. 134, no. 1–2, pp. 9–22,
2002.

[11] A. Felner, R. E. Korf, and S. Hanan, “Additive pattern
database heuristics,” J. Artif. Intell. Res., vol. 22, pp. 279–
318, 2004.

[12] O. Hansson, A. Mayer, and M. Yung, “Criticizing so-
lutions to relaxed models yields powerful admissible
heuristics,” Inf. Sci., vol. 63, no. 3, pp. 207–227, 1992.

[13] C. H. Papadimitriou and K. Steiglitz, Combinatorial
optimization: algorithms and complexity. Courier Cor-
poration, 1982.

[14] A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja,
N. R. Sturtevant, J. Schaeffer, and R. C. Holte, “Partial-
expansion A∗ with selective node generation.” in AAAI,
2012.

[15] V. Kolmogorov, “Blossom V: A new implementation of a
minimum cost perfect matching algorithm,” Math. Progr.
Comput., vol. 1, no. 1, pp. 43–67, 2009.

