
Using the Causal Graph to enhance Translations to
solve Contingent Planning Problems

Ignasi Andrés and Leliane Nunes de Barros
Department of Computer Science

IME-USP, Brazil
{ignasi,leliane } @ime.usp.br

Abstract—Planning with partial observation, an area called
contingent planning, is a complex and challenging problem since
it requires to keep track of belief states to search for a con-
tingent plan of actions. Recent approaches considers the agent’s
knowledge about the world to compile a contingent planning
problem into a full observable planning problem, described in an
epistemic logic language, and then use an efficcient full observable
planner to solve the translated problem. In this paper we use the
concept of relevance and causality to propose a new translation
based in a structure called Causal Graph that can improve the
belief tracking task of contingent Planning problems described
in a more general planning language, in particular problems
envolving actions with uncertainty on its conditional effects.

I. INTRODUCTION

Planning is the process of generating an organized set of
actions that can achieve a desired goal. Actions are selected by
anticipating their expected effects. Automated planning is the
area of Artificial Intelligence (AI) that studies this deliberation
process. Classical planning problems make several restrictive
assumptions: complete information about the environment, de-
terministic actions, single agent, discrete time and reachability
goal. Contingent Planning (CP) [1], relaxes the assumptions
of complete information and deterministic actions, and adds
sensing actions which requires reasoning about belief states.

The conceptual model of contingent planning is as follows.
Initially, the agent must consider all possible initial states (the
belief state denoted by B0). Then the agent chooses an action a
that can be executed in B0 which produces a new belief state,
according with the expected result of a. If there is hidden
information in the current location, the agent can perform
an observation o and the result of o will be used to update
the agent’s beliefs (also producing new belief states). This
repeats until the goal is reached or the agent detects a dead-
end state (a state from which it is not possible to reach the
goal). Note that an action is applicable in a belief state Bi

if its preconditions hold in all physical states, i.e. ∀s ∈ Bi.
The task of computing the next belief state after every action
or observation is called belief tracking. This process can be
implemented by an AND/OR search (OR for action choices;
AND for the observation results) in a belief state space, whose
solution is a subtree, branching on non-deterministic actions
and observations.

Fig. 1. Contingent planning in the Wumpus World. The agent starts at location
(1,1) and must grab the gold at (2,3). Belief states Bi are represented by
dashed boxes. Arrows indicate the result of actions or observations. The gray
region indicates the solution.

Figure 1 shows a complete AND/OR search tree for a small
instance of the Wumpus World, a classical domain where the
agent’s goal is to get the gold and not to be killed by a monster,
called Wumpus. The agent, starting at location (1,1), can move
in any direction and sense if there is a smell that indicates the
presence of the Wumpus in an adjacent cell; if there is no
smell, all the adjacent cells are safe, so the agent can move to
one of them; belief states where the agent and the Wumpus
are in the same location are dead-ends. The uncertainty in this
problem lies in the position of the Wumpus that is unknown
in the initial state. In Figure 1, Bi is an OR node and Oj is
an AND node; the initial belief state B0 is the set of states



consistent with wumpus at(1, 3)∨wumpus at(2, 2); and the
subtree in the grey region is the solution.

For large belief state spaces the AND/OR search can be in-
tractable, i.e. 2-EXP-Complete in the worst case [2]. However,
in the last few years, significant progress on the solutions of CP
problems has been achieved due to approaches based on trans-
lating problems with incomplete information into full observ-
able non-deterministic problems [3] [4]. The conceptual model
for the translated problem is a bit different since it is no longer
a search in the belief state space but a search in the epistemic
state space. In a epistemic state space the agent reasons about
what he knows, making explicit what he knows to be true or
false, and thus ruling out the uncertainty. E.g., in the translated
problem K(P ), the initial state s0 must be consistent with
¬Kwumpus at(1, 3)∧¬K¬wumpus at(1, 3)∧ ... where K
is the epistemic operator [5]. One limitation of the translation
approaches is that they can only solve efficiently a class of
CP problems called simple, where there is no uncertainty
in the conditional effects. Problems with uncertainty in the
conditional effects are called complex CP problems. Closed-
Loop Greedy Planner (CLG) [4] and Partial Observability-
Planner for Relevant Policies (PO-PRP) [6], considered the
state-of-the-art planners for contingent planning, can fail to
solve complex CP problems.

The search in Figure 1 was generated with complex con-
ditional actions, but a search using simple conditional actions
would not be able to apply as many actions but would not
generate the four dead-states marked with ”X”.

In this work we propose a new translation technique, sound
and complete for a wider range of CP problems, that is able
to analyse conditional effects involving uncertainty, using a
structure called the Causal Graph to produce a scalable and
more informed translation. We also introduce a planner that
uses this translation and is capable to solve most of the
contingent planning benchmark problems.

This paper is organized as follows: in Section II we formally
define contingent planning problems followed by definitions
of relevance and Causal Graph. Then in Section III we
introduce our new contingent planner, named Comp2BT, and
its modified translation method. We present some empirical
results in Section IV and a brief discussion in Section VI.

II. BACKGROUND

A. Contingent Planning Problem

Automated planning in general uses a formal language to
describe states [1]. One of the simplest and popular language
for classical planning is STRIPS [7], that can be extended to
represent a contingent planning domain.

A contingent planning problem in STRIPS is a tuple
P = 〈F, I,A,O,G〉 that extends classical planning such that
actions can be deterministic or non-deterministic and the agent
has partial observation of the world. More precisely: F is a
set of fluent symbols of the problem; I is a set of clauses
over F that defines the initial situation, partially known; the
non-unary clauses in I are all invariant (i.e. the set of axioms
D); A is a set of deterministic or non-deterministic actions; O

is a set of observations and G is a conjunction of atoms over
F that defines the planning goal.

A state is a truth valuation to the atoms in F . A literal l
is a fluent in F , or its negation. A literal l holds in a state
s iff s assigns l to be true. An action a ∈ A, is a triple
a = 〈Prec(a), Add(a), Del(a)〉 where Prec, consists of a
set of literals that must be true in the belief state where the
action is applied, i.e. ∀s ∈ B,Prec(a) ⊆ s; Add(a) is a set
of fluents from F that become true after executing the action
and Del(a) is a set of fluents also from F that become false
after executing the action, the result of applying an action a in
state s is given by RESULT (s, a) = (s \Del(a))∪Add(a).
The belief state B′ resulting of applying an action a in a belief
state B is given by B′ = {s′ : s′ = RESULT (s, a) ∀s ∈ B}.

An action a ∈ A can also include a set of conditional
effects Eff(a), where each effect e ∈ Eff(a) is given in
the form of implications {C(e) → L(e)}, where C(e) is a
set of literals and L(e) is a literal. This conditional effect
means that, in the moment of executing action a, if the
conjunction of literals in C holds, then L will be true in the
next state. The formula to calculate the next state after apply-
ing an action with conditional effects is RESULT (s, a) =
(s \ Del(a)) ∪ Add(a) ∪ L(e) when the conditions of the
conditional effect holds. For simplicity and without loss of
generality, we can write actions as a = 〈Prec(a), Eff(a)〉
where Add(a), Del(a) can be transformed into conditional
effects of the form true→ Add(a) and true→ neg(Del(a))
where neg(Del(a)) returns the negated atoms of Del(a).

A non-deterministic effect is in the form {C →
L1(e)|...|Ln(e)}, meaning that only one of Li will be true
at the next state.

Since I is a set of clauses, I holds in a set of states, i.e.
the belief state B0. Non-unary clauses in the initial state are
called axioms, and we denote this set by D. This set of axioms
D represent facts are true in every reachable state in spite of
the uncertainty. For example, in the Wumpus world showed
in Figure 1, an invariant represent the fact that there is only
one Wumpus either at position (1,3) or at position (2,2).

Observations can also have preconditions, and are in the
form o = 〈C,L〉 meaning that when C (body) is true, o
uncover the truth value of a positive literal L (head). On
performing an observation o = 〈C,L〉, the successor belief
state B′ is the set of states from B in which L holds:
B′ = {s|s ∈ B and L ∈ s}. After executing an observation
the belief state size will decrease. A sequence of actions (and
observations) a0, a1, ..., an is applicable in B if a0 is applica-
ble in B and results in a belief state B1, and inductively, ai is
applicable in Bi resulting in Bn. A belief state B′ is reachable
from B if there is a sequence of actions (and observations) that
when applied in B results in B′. In deterministic contingent
problems, the actions are deterministic and the only source of
non-determinism are the observations.

The process of updating the beliefs considering the obser-
vations and axioms, is given by Bo = UPDATE(B′, o) =
UNIT (B′ ∪ o ∪ D). Where UNIT (s) is the operation that
gives the unit literals in the logic closure of s. And o is the



observation and D is the non-unary clauses in the initial state
or the axioms.

When planning with partial information and sensing, the
solution is not a sequence of actions but a tree structure. The
solution must consider every result of an observation. Thus, a
solution for a contingent planning problem P is a contingent
plan, i.e. a policy π [4] that maps belief states B into actions
a(n) ∈ A. In a solution, tree nodes are labeled with belief
states and edges with actions. A node n has two children if
the action a(n) is an observation. We say that Π solves a
contingent problem P , iff every execution of π is applicable
and finishes in a belief state B′ where the goal G holds.

B. Simple Contingent Problems

A planner that solves Contingent Problems has to keep track
of the beliefs to select the next best actions. As it is showed in
Figure 1, this is done by applying the action on every physical
state in the belief state B, and obtaining the new belief state
B′. This task can be intractable in the worst case, exponential
in the number of fluents of the problem |F |.

But in certain problems, when the non-unary clauses in I
(i.e. the axioms) are all invariant, i.e. a formula that is true in
each possible initial state and remains true in any reachable
state [8], and the effects of the actions do not depend on fluents
that are hidden in I (fluents p such that I 2 p and I 2 ¬p),
computation of the new belief state b′ can be characterized
in a simple form. This is what happens in contingent simple
problems [9], i.e. problems when the conditional effects don’t
involve uncertainty.

Formally a simple contingent planning problem is:
Definition 1: [9] A contingent planning problem P =

〈F, I,A,O,G〉 is simple if no hidden fluents appear in the
body of a conditional effect.

However hidden fluents can appear in the preconditions
of actions and in the heads of conditional effects. Since
preconditions must hold in a belief state b before applying an
action, they do not carry uncertainty. As an example, consider
the action showed in Figure 2 (top). Note that the precondition
only includes the negation of the Wumpus location, so it can
be applied only in safe locations. Simple contingent problems
have interesting properties:
• (Belief representation) For a simple contingent problem,

let D be the set of non-unary clauses in I (invariants). If
b is a reachable belief state from I , and R is the set of
literals that are known to hold in b, b is fully characterized
by the formula D ∪R.

• (Monotonicity) If the literal L is known in a reachable
belief state b of a contingent simple problem, and b′ is a
reachable belief state from b, then L is known in b.

According to this properties, belief tracking for simple
contingent problems is linear in |F |, because actions effects
do not depend on fluents whose values are unknown.

C. Complex Contingent Problems

In opposition to the simple contingent planning problems,
we formally define a complex contingent planning problem:

Fig. 2. Move action for the Wumpus world problem. (top) Action move is
a simple action; (bottom) Action moveC is an action with uncertainty in the
conditional effect.

Definition 2: A contingent planning problem P =
〈F, I,A,O,G〉 is complex if hidden fluents appear in the body
of a conditional effect.

As an example, consider the moveC action showed in
Figure 2 (bottom). Notice that the predicate wumpus at(L2)
in the conditional effect can be unknown but the action can
be applied. In these kind of problems, the belief tracking
cannot be fully represented only by the invariants and the
literals known to hold in the belief state B. When applying
action moveC, there is not enough information since the belief
representation D ∪ R can not be used to compute the next
belief state and the agent must consider all possible worlds.
Note that, in deterministic contingent planning, the property
of monotonicity is still valid for complex contingent planning
problems.

D. Relevance and Causal Graph

Given a contingent planning problem P = 〈F, I,A,O,G〉,
we can formalize some concepts as concepts as cause and
relevance [10], to understand how uncertainty is transmitted.
For a literal L, whether observable or not, we define a literal X
as being the immediate cause (of uncertainty) of L iff L 6= X
and X is in the conditions C of a conditional effect C → L.

The notion of causal relevancy is given by the transitive
closure of the immediate cause relation. We define X as being
causally relevant to L in P as follows: (1) if L = X , X is
the immediate cause of L or (2) X is causally relevant to
Y that is causally relevant to L. Finally, we define X to be
evidentially relevant to L if L is causally relevant to X and
X is an observable literal.

With the definitions above we can construct the Causal
Graph that we will use to perform belief tracking on complex
CP problems. The graph we consider is constructed in a
slightly different way from the causal graph in [10], since
it takes into account also the preconditions, making it similar
to the FD-Causal Graph [11]. The Causal Graph is a directed
graph with literals as nodes and a directed edge X → Y if X
is causally relevant to Y .

Definition 3 (Causal Graph): Let P be a Contingent Plan-
ning Problem given by P = 〈F, I,A,O,G〉. The causal graph
of P , Cg(P ) is a DAG (V,E) where V = F , containing an arc
(X,Y ) iff X 6= Y and there is an effect C → Y and X ∈ C,
or an action a with an effect C → Y such that X ∈ Prec(a).

In Figure 3 we can see an example of a Causal Graph
considering only the complex action moveC of Figure 2
(bottom).



Fig. 3. Example of causal graph for ¬alive for the action moveC showed
in Figure 2 (bottom).

III. THE COMP2BT PLANNER

The planner COMP2BT (Compact Compilation Belief
Tracking), is based in a two layer architecture: a layer with
the translation, and a layer with the Full Observable Non-
Deterministic (FOND) planner that solves the translated full
observable planning problem. The aim of COMP2BT is to first
make the translation (compile) and then reduce the belief state
when calculating the next state using the deductive actions
and axioms (compact). These deductive axioms enhance a
basic translation and make it able to perform belief tracking in
complex contingent planning problems. The translation layer
receives as an input a contingent planning problem P and
returns the translated K(P ) full observable version of the
problem.

The underlying planner used in the experiments is a mod-
ified FF planner [12], with some differences respect to the
original. First, the planner branches and recursively calls itself
after every observation considering both outcomes of the
observation to construct the solution. The second modification
is that after selecting an action for expansion, the state s
obtained is closed under the deductive axioms, meaning that
the agent can reduce the belief state obtaining knowledge,
thanks to the effects of the actions (action compilation) and
the observations (enhanced observations see section III-C).
The deductive actions are axioms modeled as actions that can
be selected by the planner and expanded with no cost after
executing an action, to reflect the process of deduct in belief
tracking. This is the most critical difference since part of the
effects is translated as axioms that have to be maintained all the
time during the execution. This underlying classical planner is
strongly based in the modified FF planner used by the CLG
planner.

A. Translations

The translation K of a problem P is the epistemic version
of the problem P . It means that the agent reasons about the
knowledge of the fluents in P , instead of reasoning about the
world. The meaning of the operator K is to indicate if the
value of the fluent L is known. For example, the epistemic
fluent KL means that the value of L is known to be true, and
K¬L that L is known to be false.

The translation used in this work is based on the translation
X0 for the planner LW1 [13], and is similar to the translation
K0 for conformant problems [3].

Definition 4 (Translation): For a contingent problem P =
〈F, I,A,O,G〉, the translation K0(P ) outputs a planning
problem with full observation K0(P ) = 〈F ′, I ′, A′, G′〉 and a
set of axioms D′ (named deductive rules):

• F ′ = {KL,K¬L | L ∈ F};
• I ′ = {KL | L ∈ I} ;
• G′ = {KL | L ∈ G};
• A′ is the set of actions A′A ∪O′ where:

1) A′A : for every action a ∈ A, there is an action a′ ∈
A′A where every precondition L of a, is replaced by
KL, and for every conditional effect C → L of the
action a, a′ contains two effects KC → KL and
¬K¬C → ¬K¬L;

2) O′ : for every observation o : C → L ∈ O,
there is a non-deterministic action o′ ∈ O′ such
that every precondition C of o, is replaced by
KC,¬KL,¬K¬L, and two non-deterministic ef-
fects KL and K¬L;

• D′ : for every (L ⊃ L) ∈ D there is an axiom K¬C =⇒
KL, and KL =⇒ K¬C

In Definition 4, C is a set of literals C = L1, L2, ..., Ln,
the expressions KC and ¬K¬C are abbreviations for
KL1,KL2, ...,KLn and ¬K¬L1,¬K¬L2, ...,¬K¬Ln re-
spectively. Notice that the observations have preconditions
preempting the planner to choose an observation that has
already been made. The deductive rules or axioms enforce
the exclusivity and exhaustiveness of the uncertain variables.
Sensing actions are the only non-deterministic actions in the
translated problem.

The translation K0(P ) is linear as it introduces no as-
sumption or tags and is complete only for simple problems.
To overcome this limitation, we use the Action Compilation
extension proposed by [13], with some extra extensions: before
performing the translation, we create the causal graph for all
actions and make an analysis based on it to detect effects with
uncertainty that can lead the agent towards a state with no
applicable applicable (i.e. dead end). After that, the planner
adds some deductive rules to the result of a translation K0(P ).

B. Use of Causal Graph for avoiding dead-ends

Recall that a dead-end is a state that can not reach the goal.
A dead-end belief state is a belief state that contains a physical
dead-end state [14]. In a contingent planning problem, to
compute the next belief state, some complex effects can lead
the agent to a dead-end belief state, because uncertainty can be
propagated through the uncertainty on the conditional effects.
This is shown in Figure 1 by the belief states marked with an
”X”.

The COMP2BT planner deals with dead-end belief states
by translating the original action to a new version where the
effects that can lead the agent to a dead-end are removed and
transformed into new axioms and actions have some additional
preconditions to avoid entering these states. This is done using
the Causal Graph.

Definition 5 (Dead-end effect): If action a contains a com-
plex conditional effect C → L, and in the causal graph there
are no directed edges exiting from L, the effect is called a
Dead-end effect because it can lead to a dead-end belief state.

To avoid the uncertain effects of dead-end effects, we
translate the action a containing the dead-end effect as:



• The dead-end effect C → L is translated as an axiom
KC → KL.

• We include in the precondition of the translated action
the condition K¬C.

If there is an complex effect C → L and L has no directed
arrows from it, it means that L does not appear in the precondi-
tion of any action or effect. No appearing in the precondition
of any action means that either L is a goal condition or a
literal that negates a literal ¬L appearing in a precondition.
To solve the first case, the translation can include a dummy
goal action, that has the goal conditions G as preconditions.
And in the second case, since the literal does not appear in any
precondition or condition it means that eliminating the effect
does not cause the agent to avoid reaching the goal. But since
the effect is gone from the translation, the agent may try to
apply the action in states where the conditional effect should
be applied. To avoid these cases, the action should include in
its preconditions, the conditions of the complex effect negated.

C. Enhancing observations

When an observation is made, the agent should be able to
deduct that some non-observable literals are no longer known
to be true or false, even if they were uncertain.

With the evidential relevance we express that a observable
literal L is relevant for a literal X that appears in the body
of an effect C → L. But this is not sufficient to deduct
information about X from L, because some other literals
can be relevant to the same literal observed. As an example
consider a 1×N grid where a robot can move to an adjacent
cell. If the agent performs an observation, and detects a wall at
the left, the agent must deduct then that he is in the leftmost
location, and similarly when the agent senses a wall in the
right, the agent must know that he reached the goal. But if the
agent does not sense a wall at the right, it cannot deduct in
which position is, using only the evidential relevance, because
more than one position can yield the same observation. In fact,
the agent does know that he is not at the goal position. We
extend the definition of evidential relevance to reflect this:

Definition 6 (Inversed Evidential Relevance): X is inversed
evidentially relevant to Y if X is an observable literal, and Y
is causally relevant to the complement of X , ¬X .

Using this definition, we can add some axioms to the
translation K0(P ) to be considered after every observation in
order to perform a better belief tracking in complex contingent
planning problems:

Definition 7 (Enhanced Observations): If X is an observable
literal, and X is inversed evidential relevant to Y , when
performing an observation that yields the literal X , the agent
also knows ¬Y .

IV. EXPERIMENTS

We tested the proposed algorithm over a selection of con-
tingent domains, comparing it with the CLG planner [4] and
PO-PRP planner [6], both considered the state-of-the-art of
contingent planning. The efficiency of the planner is given
by the time it takes to compute a complete plan, and the

quality is based on the total number of actions in the solution.
All experiments were performed in a Linux machine with an
1.33 Ghz processor. The times were limited to one hour for
each one of the instances of every problem and to 1GB RAM
memory.

The benchmark domains used in the experiments are: Color
Balls (cballs), Wumpus World, Doors, Localize and Clog
[4]. They are all considered as simple contingent planning
problems, except for the Localize domain and the modified
versions of Wumpus and Doors (as explained below) in which
actions contain complex conditional effects. These domains
are included in the CLG Benchmark package, except for the
modified Wumpus and Doors. Color Balls involves searching
for a set of balls of different colors and throwing them in the
correct garbage can. Doors is a domain where an agent must
move in a grid with hidden doors. Localize consists in a robot
that must locate itself in a known map. And Clog is a logistic
problem.

To demonstrate how the translation step of COMP2BT
overcomes the disadvantages of other translations, we also
used a variation with complex conditional actions for the
Doors and Wumpus domains [15]. In the Wumpus-D (Wumpus
with dead-ends) the safe preconditions are removed, and it is
added an special effect that makes the agent die if it enters in a
cell that is not safe (i.e. it contains a Wumpus or a pit) creating
a dead-end. In the new Doors-D domain, we added an effect
that makes the robot break if it tries to enter through a door that
is not opened, removing the opened precondition. These new
variations are more challenging because they involve complex
conditional actions.

Table I shows the comparison of the three planners CLG,
PO-PRP and COMP2BT: For simple contingent planning
problems (instances from wumpus-5 to doors-11), in gen-
eral PO-PRP obtains the best results followed closely by
COMP2BT, even if in some instances PO-PRP runs out of
memory. For those problems, PO-PRP and COMP2BT are
orders of magnitude better than CLG. Due to the fact that
PO-PRP builds partial policies instead of trees, its plans have
a better quality. A partial policy is a policy defined only for
some relevant literals of the belief state, instead of a policy
defined for all literals.

In domains with complex conditional actions, COMP2BT
outperforms both PO-PRP and CLG, being capable of solve
more problems in less time.

V. DISCUSSION

a) Linear translation: One reason for COMP2BT to
outperform CLG is that it uses a quadratic translation based
on tags and merges. Roughly speaking, this means that it
considers every possible initial state, and includes in the
translation new literals KL/t meaning that the literal L is
known to be true if in the initial state t was true. Since
in the CLG planner there is a tag for every possible initial
state, the translated problem increases quadratically in size,
and actions have more effects. As an example, a problem with
10 fluents translated with a linear translation can increase to



TABLE I
TIMES IN SECONDS OBTAINED FOR THE THREE DIFFERENT PLANNERS

(CLG, COMP2BT AND PO-PRP) TO COMPUTE THE FULL CONTINGENT
PLANS. T STANDS FOR TIME-OUT AND MO FOR MEMORY OUT.

CLG COMP2BT PO-PRP
Problem Time Size Time Size Time Size
wumpus-5 1.28 754 0.229 435 0.48 197
wumpus-7 30.52 6552 2.968 4115 3.5 631
wumpus-10 T 76.809 63297 24.36 1471
wumpus-15 T T 162.6 7787
cballs4-1 0.62 295 0.098 270 0.08 271
cballs4-2 60.84 20050 5.712 15149 5.54 12360
cballs4-3 T 448.889 892590 MO
cballs10-1 337 4445 12.325 4799 5.02 3849
cballs10-2 T T MO
clog-7 0.28 210 0.24 190 0.24 93
clog-huge 490.46 37718 39.985 28972 7.76 15799
doors-7 18.76 2153 0.745 2241 0.682 1282
doors-9 1294.64 46024 19.128 46656 18.3 23897
doors-11 T 659.907 1208947 MO
wumpus-d5 T 0.259 491 1.48 253
wumpus-d7 T 3.494 4589 17.86 947
wumpus-d10 T 88.562 69708 336.66 2497
doors-d5 T 0.084 173 0.14 107
doors-d7 T 1.142 2584 1.06 1304
doors-d9 T 31.401 53217 28.62 22570
doors-d11 T MO MO
localize-5 0.4 115 0.094 106 2139.76 8399
localize-7 2.58 241 0.27 239 T
localize-9 11.8 409 0.737 416 T
localize-11 180.68 617 2.246 688 T
localize-13 MO MO 4.948 969 T

2 × 10 = 20 fluents. But with a quadratic translation it can
grow to (2×10)2 = 400 fluents. The CLG planner takes more
time updating belief states because it has to consider a larger
number of epistemic fluents. Comp2BT and PO-PRP use a
linear translation that results in a smaller translated problem
with less literals. Both planners are better than CLG in all
benchmarks. PO-PRP and COMP2BT use linear translation
and get better results in most domains.

b) Detecting complex effect dead-ends: In domains with
effects leading to dead-ends, like wumpus-d and doors-d,
COMP2BT can detect this kind of complex conditional actions
and translate them in a version with no dead-ends, which
effectively reduces the branching factor. However CLG fails to
deal with this problems. CLG may fail when the local search
(hill climbing) fails and then it has to restart with a complete
heuristic search. Surprisingly PO-PRP can solve them with
worse times than COMP2BT.

c) Dealing with complex effects: In the localize domain
actions are modeled with conditional actions. In this case to
keep track of beliefs during the search it is harder. CLG can
solve easily this kind of problems since it considers all possible
initial states. But since PO-PRP uses a linear translation, it
cannot deal with the complex actions, and fails. Compt2BT
uses a translation were actions yield more information and
observations are enhanced with axioms. Compt2BT can solve
this kind of problems in a better time than both CLG and
PO-PRP.

VI. CONCLUSIONS AND FUTURE WORK
In sum, belief tracking for planning with partial observation

is an open and challenging problem in Automated Planning.
In this paper we have shown some causality relations among
variables in a contingent planning problem that can be ex-
ploited by a planner. We have shown a translation that is
correct and uses information concerning these relations to
keep track of beliefs while being linear in size. We tested
the proposed planner COMP2BT on 7 different contingent
planning domains. The results show that our planner can solve
more problems than the two planners considered the state-of-
the-art for contingent planning, presenting also better times (up
to 2 orders of magnitude faster than CLG). Some challenges
we would like to address in the future is to use the causal graph
to detect traps of dead-ends, while keeping the translation
small.

ACKNOWLEDGMENT

The first author is supported by funding from the CAPES
Foundation within the Ministry of Education, Brazil. The
second author is supported by the grant #2015/01587-0, Sao
Paulo Research Foundation (FAPESP), and the CNPq . Also
we would like to thank Christian Muise for the help he
provided to use the PO-PRP planner.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Access Online via Elsevier, 2004.

[2] J. Rintanen, “Complexity of planning with partial observability.” in
ICAPS, 2004, pp. 345–354.

[3] H. Palacios and H. Geffner, “Compiling uncertainty away in conformant
planning problems with bounded width,” Journal of Artificial Intelli-
gence Research, vol. 35, no. 2, p. 623, 2009.

[4] A. Albore, H. Palacios, and H. Geffner, “A translation-based approach
to contingent planning.” in IJCAI, 2009, pp. 1623–1628.

[5] J. Hintikka, Knowledge and belief: an introduction to the logic of the
two notions, ser. Contemporary philosophy. Cornell University Press,
1962.

[6] C. Muise, V. Belle, and S. A. McIlraith, “Computing contingent plans
via fully observable non-deterministic planning,” 2014.

[7] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3, pp. 189–208, 1972.

[8] M. Helmert, “Concise finite-domain representations for pddl planning
tasks,” Artificial Intelligence, vol. 173, no. 5, pp. 503–535, 2009.

[9] B. Bonet and H. Geffner, “Planning under partial observability by
classical replanning: Theory and experiments,” in IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol. 22, 2011,
p. 1936.

[10] ——, “Belief tracking for planning with sensing: Width, complexity and
approximations,” Journal of Artificial Intelligence Research, pp. 923–
970, 2014.

[11] M. Helmert, “The Fast Downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, pp. 191–246, 2006.

[12] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[13] B. Bonet and H. Geffner, “Flexible and scalable partially observable
planning with linear translations,” in Proc. 28th AAAI Conf. on Artificial
Intelligence (AAAI). AAAI Press, 2014.

[14] A. Albore and H. Geffner, “Acting in partially observable environments
when achievement of the goal cannot be guaranteed,” in Proc. of ICAPS
Workshop on Planning and Plan Execution for Real-World Systems,
2009.

[15] R. I. Brafman and G. Shani, “A multi-path compilation approach to
contingent planning.” in AAAI, 2012.


