
A Voronoi Diagram Based Classifier for Multiclass
Imbalanced Data Sets

Evandro J. R. Silva
Centro de Informática - CIn
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Abstract—The imbalance problem is receiving an increasing
attention in the literature. Studies in binary cases are recurrent,
however there still are several real world problems with more
than two classes. The known solutions for binary datasets may
not be applicable in this case. Some efforts are being applied in
decomposition techniques which transforms a multiclass problem
into some binary problems. However it is also possible to face
a multiclass problem with an ad hoc approach, i.e., a classifier
able to handle all classes at once. In this work a method able to
handle several classes is proposed. This new method is based on
the Voronoi diagram. We try to dynamically divide the feature
space into several regions, each one assigned to a different class.
It is expected for the method to be able to construct a complex
classification model. However, as it is in its beginning, some
tests need to be performed in order to evaluate its feasibility.
Experiments with some classical classifiers confirm its feasibility,
and comparisons with ad hoc methods found in literature show
its potentiality.

I. INTRODUCTION

The imbalance data problem occurs when a dataset has
a different distribution of samples among the classes. In
the literature this problem is well studied in the case of
binary datasets [1], [2]. However there exist several multiclass
imbalanced datasets which also need to be addressed. In this
case the instance distribution may be different in more than
two classes.

Unfortunately when multiple classes are present, the litera-
ture solutions proposed for the binary case may not be directly
applicable, or may achieve a lower performance than expected
[1]. A multiclass problem may also require a different focus.
For example, in a binary case researchers focus on the correct
classification of the minority class, as normally the classifier is
skewed towards the majority class, and the minority is usually
the most important one. With multiple classes it is possible
the non existence of a main class.

In the literature there are three approaches to address
multiclass problems. The first one deals with classifiers able of
handling all classes at once. Classical algorithms in machine
learning area such as decision trees and artificial neural
networks are examples. The second one is called one-vs-
one (OVO) [1], [3], [4] or one-against-one (OAO) [2]. The
OVO strategy consists of dividing the problem into as many
binary problems as the possible combinations between pairs
of classes, so one classifier is trained to discriminate between

each pair, and then the outputs of these base classifiers are
combined in order to predict the output class [4]. The third
approach is called one-vs-all (OVA) [1], [4] or one-against-
all (OAA) [2]. The OVA approach trains a classifier for each
class, where the class is distinguished from all other classes, so
the base classifier with a positive answer indicates the output
class [4].

Usually it is easier to build a classifier to distinguish be-
tween only two classes. Techniques that transform multiclass
problems in binary (OVO and OVA) became the most common
strategy to face multiclass imbalance problems [4]. These
binarization strategies have in common the construction of an
ensemble of classifiers and, consequently, share the inherent
benefits on performance due to the use of these ensembles.
However they also have some drawbacks. For example, in
OVO each classifier is only trained with instances from the
two classes the classifier must distinguish. The instances
belonging to other classes are unknown to the classifier. During
the classification process a new sample is presented to all
binary classifiers, which must set a score for each one of
the two trained classes. Since all outputs are aggregated, in
the decision process both the competent and non-competent
classifiers are taken into account, possibly misleading the
correct sample label [5]. Hence, the use of the most appropriate
classifier, or the competent one for a given class, becomes a
problem itself.

Therefore, the use of the first approach, i.e., the construction
of a classifier able to handle with several classes at once, is
still practicable, and desirable as it is not the most common
used technique [1], [2]. This type of classifier also allows the
use of ensembles, which may improve its performance.

In this work we propose a different classification model to
multiclass imbalanced datasets. Its base is the Voronoi diagram
idea [6]. In this diagram a set of points S = {s1, s2, ..., sn},
also known as seeds, is used to split regions. Each seed si
has a corresponding region (Voronoi cell) where all points are
closer to si than to any other seed.

The build of a Voronoi diagram is like creating a mosaic
of regions and it does not need to learn/discover a function as
artificial neural networks and other classifiers do. It is expected
that a classifier based on Voronoi cells will be able to construct
a complex classification model, independently of the number



Fig. 1. Pseudo-code of VDBC
/*Given all training instances*/
for each instance do

Verify the nearest neighbor
if nearest neighbor is not a seed then

if nearest neighbor is from same class then
Create seed between them

else
This instance becomes a seed

end if
else

if nearest neighbor is from different class then
This instance becomes a seed;

end if
end if

end for
/*Given all test instances*/
for each instance do

Classify it accordingly to its nearest seed
end for

of classes. At the same time the proposed classification model
will be very simple to build.

The proposed classifier, named as VDBC (Voronoi Diagram
Based Classifier) is evaluated in different UCI [7] databases
and compared to classical approaches to deal with imbalanced
problems as well as with some approaches found in literature.

The remainder of this paper is organized as follows. In
Sect. II we present some related works. Next, in Sect. III
the proposed classification model is presented in details. In
Sect. IV experiments and discussions are exposed. Sect. V
presents some final remarks.

II. RELATED WORK

In this section we present some related ad hoc classifiers
for multiclass imbalanced problems.

In [8] the authors present the SMOTEBoost. This tech-
nique consists of applying SMOTE (Synthetic Minority Over-
sampling TEchnique) [9] after each boosting iteration. The
authors justify that a boosting algorithm sampling from a pool
of data that predominantly consists of the majority class, will
be probably skewed towards the majority class. Moreover,
although boosting reduces the variance and the bias in the final
ensemble, it might not be as effective for datasets with skewed
class distributions. Therefore, introducing SMOTE in each
iteration of boosting will enable each learner to sample more
of the minority class cases, and also learn better and broader
decision regions for the minority class. The authors also imply
that introducing the SMOTE procedure also increases the
diversity amongst the classifiers in the ensemble, as in each
iteration there is a production of a different set of synthetic
examples, and therefore different classifiers. The used boosting
procedure was a variant of the AdaBoost.M2 [10].

Wang and Yao [2] developed a study regarding the exten-
sion of boosting techniques for imbalance problems. Their

approach is an AdaBoost algorithm [10] in combination with
negative correlation learning [11]. The main procedure is quite
similar to any boosting approach. However, the update of the
weights depends on the classification or misclassification given
by both the classifiers in the current iteration and the global
ensemble. The initial weights in this boosting approach are
assigned in inverse proportion to the number of instances in
the corresponding class. The base learner used is the C4.5
classifier [12].

Sokol Koço and Cécile Capponi [13] introduced CoMBo
(Confusion Matrix Boosting), an extension of AdaBoost.MM
[14], that greedily minimizes the empirical norm of the
confusion matrix. This process is done in such way that
poorly represented classes are performed as well as majority
classes within the overall learning process, independently from
any prior misclassification cost. In other words the norm of
the empirical confusion matrix1 is used as a metric to be
minimized by a boosting-based method.

CoMBo is also a cost sensitive method (as it uses a cost
matrix) where the classification costs are given for each
sample and class. However, contrary to usual cost sensitive
methods, the matrix is not given a priori to the learning
process. The matrix is updated after each iteration so that
the misclassification cost reflects the difficulty of correctly
classifying an sample. The update rule was built to depend
not only on the ability of a classifier to correctly classify a
hard example, but also on the number of samples that have
the same class. The output hypothesis is a simple weighted
majority vote over the whole set of weak classifiers. So, for
a given example, the final prediction is the class that obtains
the highest score.

III. PROPOSED CLASSIFICATION MODEL

The proposed classification model is based on the Voronoi
diagram idea. The algorithm tries to dynamically create re-
gions through the sample space, assigning to each cell a
respective class. The seeds are created as follows. For each
training instance its nearest neighbor is found. A class ver-
ification is executed. If the neighbor is from the same class
a seed (or centroid) is created between them. Otherwise the
current instance becomes the seed. However, if the neighbor is
a seed, an action will be performed only if the seed belongs to
a different class. In this case the current instance also becomes
a seed.

All seeds are automatically assigned to the training sample
class. After this training phase, the sample space is divided
into several cells, each one assigned to a different class. With
the diagram constructed the testing phase begins. In the testing
phase, for each unknown instance its nearest neighbor, i.e.,
the nearest seed is found. The unknown instance is classified
accordingly to the nearest seed. The pseudo-code of the
proposed classification model is shown in Figure 1.

For experimental purposes three modifications were made in
the original algorithm. In the next section all versions will be

1Please check [13] for the definition of empirical confusion matrix.



TABLE I
SUMMARY OF THE USED DATASETS

Name #Classes # IR MIR
Gene 3 762/765/1648 2.1627 0.4134
Glass 6 70/76/17/13/09/29 8.4444 5.0133
Horse 3 224/88/52 4.3077 1.2538

Page-Blocks 5 4913/329/28/88/115 175.4643 59.5996
Satimage 6 1533/703/1358/626/707/1508 2.4488 0.9564
Thyroid 3 166/368/6666 40.1566 18.3396

Yeast 10 463/05/35/44/51/163/244/429/20/30 92.6 44.7543

compared, and the best of them will be compared to classical
algorithms.

The first modification corresponds to the addition of two or
more neighbors in the NN-rule. We investigate the use of two,
three, four and five neighbors. The remain of the algorithm
does not suffer any modification, i.e., if the neighbors of an
instance belong to the same class a seed is created among
them, otherwise the instance becomes the seed, itself.

The second modification consists in the use of the SMOTE
[9] in the training phase. Differently from Wang and Yao
[2], we did not considered the existence of “multi-minority”
or “multi-majority” classes. Wang and Yao created artificial
datasets with majority classes and minority classes with the
same sizes. For the “multi-minority” case they gathered to-
gether one majority class with several minority classes. In
the “multi-majority” case the authors gathered together one
minority class with several majority classes. However, as can
be seen in Table I, in real world problems we may not have
such clear distinction between classes. It is even possible to
a dataset present both “multi-minority” and “multi-majority”
cases. With this information in mind we decided to automatize
the choice of which classes will be increased with SMOTE.

The SMOTE strategy is used as follows. Let C =
{c1, c2, ..., cn} be the set of classes and p(cn) be the probabil-
ity of a sample belong to class n. The average of all classes’
probabilities is calculated and then compared to each single
probability. The class with single probability lesser than the
average is chosen to be increased via SMOTE. During the
training phase, synthetic examples are created between each
instance and all others of the same class.

The third modification is related to the degree of overlapping
among classes. As is stated in Section IV VDBC decreases its
performance when overlapping is present. To overcome this
situation the following steps were implemented:

1) Calculate generalized Fisher Ratio (Table IV) [15], [16]
for each pair of classes of the dataset;

2) Select the pairs in which Fisher Ratio values are less or
equal to 0.15;

3) Find a centroid for each class belonging to the pair;
4) Create new instances, randomly, between centroids2;

2The number of instances to be created in Step 4 is equal to the size of
the biggest class in the pair.

5) For each new synthetic instance assign one of two
possible classes randomly.

IV. EXPERIMENTS AND DISCUSSION

In this section comparisons among the proposed algorithm
and others algorithms (classical and ad hoc) are performed.

As can be seen in Section II all presented related works
are based in boosting methods, which may give them some
expected advantages inherent to the use of ensembles. How-
ever, as the proposed classification model is quite simple, a
comparison with classical classifiers might show its feasibility,
whereas comparisons with ad hoc methods might show how
distant its performance is from some state-of-the art methods.

The experiments were performed in seven datasets from
UCI repository [7]. Table I shows a summary of the datasets.
One important thing in this table is the concept of MIR
(Multiclass Imbalance Ratio), which is proposed in this paper.

In a binary case the Imbalanced Ratio (IR) is defined as the
ratio between the number of instances of the majority class and
the minority class [1]. However, as we have more than two
classes, and there is no more a well defined concept of majority
and minority classes, a different measure of imbalance need
to be defined considering all classes and not only the extreme
cases.

Let C = {c1, c2, ..., cn} be the set of classes and xc the
number of elements of the class c. The MIR can be defined
as

MIR =

n∑
c=1

n∑
c=1

xc

n
xc

− n (1)

The numerator part finds the size each class should have
in such way the data set would be balanced. Furthermore this
value is divided for each class size, creating an imbalanced
ratio. The sum of all ratios less the number of classes creates
the value of MIR. Notice that a completely balanced case has
a MIR value of 0.

The MIR shows how much heterogeneous are the size of
classes in the dataset. As higher is the value of MIR higher is
the difference among classes regarding their sizes. Therefore
a multiclass data set with a high value for MIR probably will
face imbalance issues.



TABLE II
AVERAGE MAUC OF VDBC WITH EACH NEIGHBORHOOD CONFIGURATION

Dataset 1NN 2NN 3NN 4NN 5NN
Gene 0.7172±0.0301 0.7570±0.0122 0.7601±0.0278 0.7761±0.0278 0.7640±0.0447
Glass 0.8497±0.0347 0.8575±0.0321 0.8640±0.0305 0.8621±0.0313 0.8644±0.0322
Horse 0.5917±0.0286 0.5940±0.0299 0.5961±0.0295 0.5999±0.0273 0.5977±0.0306

Page-Blocks 0.7504±0.0299 0.6850±0.0302 0.6861±0.0258 0.6927±0.0279 0.7063±0.0359
Satimage 0.9412±0.0040 0.9476±0.0038 0.9465±0.0035 0.9473±0.0043 0.9467±0.0035
Thyroid 0.7624±0.0224 0.7406±0.0193 0.7452±0.0168 0.7492±0.0227 0.7490±0.0212

Yeast 0.6622±0.0225 0.6670±0.0222 0.6736±0.0213 0.6687±0.0250 0.6696±0.0232

TABLE III
AVERAGE MAUC OF THREE VERSIONS OF VDBC

Dataset Original + SMOTE + Fisher Ratio
Gene 0.7172±0.0301 0.6450±0.0110 0.8837±0.0107
Glass 0.8497±0.0347 0.8448±0.0329 0.9381±0.0291
Horse 0.5917±0.0286 0.5851±0.0262 0.8429±0.0393

Page-Blocks 0.7504±0.0299 0.7568±0.0308 0.9039±0.0211
Satimage 0.9412±0.0040 0.9453±0.0035 0.9816±0.0023
Thyroid 0.7624±0.0224 0.7566±0.0204 0.8999±0.0174

Yeast 0.6622±0.0225 0.6667±0.0250 0.8297±0.0376

However, in some cases the value of MIR appears to be
lower than it should to be. This happens because the classes
sizes are relatively homogeneous. For instance in the Satimage
data set classes may be separated in two groups in which the
first is the group of classes of size near 1500 instances and the
other group with classes of size near 700 instances. Therefore
its MIR value is low despite being imbalanced.

The experiments are organized as follows. A total of 100
runs were performed with each classifier3, in each data set. In
each run the training and test sets were built randomly, with a
division of 2/3 and 1/3, respectively, but following the natural
distribution of the classes. The results shown hereafter are the
average of these 100 runs.

The metric used to evaluate the classifiers performances
was the MAUC [17], an extension of AUC (Area Under
ROC Curve) for multiclass problems. In previous work we
investigated the Balanced Accuracy [18] and it showed to be
completely equivalent to AUC in binary datasets. However
with more than two classes the Balanced Accuracy behavior
is completely different.

In multiclass scenario the Balanced Accuracy metric also
shows another problem, specifically with the presence of rare
classes. For example, if one class has only 3 instances for
testing, and the classifier is able to correctly classify 2 of
them, it will have a bad performance according to Balanced
Accuracy. Using AUC and consequently MAUC this problem
does not occurs.

The experiments were divided in four steps. The first one
investigates the use of more than one neighbor of training
instances. The second experiment compares the four versions
of the proposed algorithm, as presented in Sect. III. The third

3Except ad hoc methods. Their results were extracted from the literature.

experiment compares the best version of the proposed algo-
rithm to classical algorithms, namely a Multilayer Perceptron
with 100 hidden neurons (MLP100) and CART (Classification
and Regression Tree) [19] classifier. The fourth experiment is
the comparison among the proposed algorithm and ad hoc
methods.

Table II shows the results of the proposed method with
different neighborhood configuration. Values in bold are the
highest achieved value for each data set, while values after ±
symbol means the standard deviation. The values underlined
are those statistically equivalent4 to the highest value.

The increasing in the number of neighbors does not mean
an increasing of performance. Also, we did not identified a
configuration as definitively preferred. Nevertheless in four of
the seven data sets, the best performances were achieved with
a low number of neighbors and in two of these four the best
performance were achieved with only one neighbor. As this is
the simplest configuration, its result will be used in the second
experiment.

Table III shows the results of three versions of VDBC.
The second modification, i.e., VBDC + SMOTE did not have
performance improvement. Meanwhile the third modification
showed to be a very good complement to the algorithm.

The last modification to VDBC was motivated by the fact
that it shows to be sensitive to overlapping. This fact can
be easily noticed crossing values of Tables III and IV. The
latter shows the generalized Fisher Ratio (FR) [15], [16].
This measure verify the degree of separation between classes.
As higher the value more separated are the classes. Among
the classes used in this work, those with higher degrees
of separation are the same in which VDBC had its best
performance. Thus, overcoming overlapping problem resulted
in a better performance, as expected.

There is, however, an outlier. The FR value for Thyroid
shows a data set with almost non separated classes. Nev-
ertheless VDBC was able to better generalize its instances
than instances of other data sets with more separated classes.
This happens because the biggest class in Thyroid data set
is huge in comparison with other classes. Thus, the biggest
class part in the formula has an enormous influence in the
final value. A similar case occurs with Page-Blocks data set,
however in smaller proportions. Hence, the FR formula should

4Statistical tests were performed with α = 0.05, t-student for parametric
tests and Wilcoxon’s ranksum for non-parametric tests.



TABLE IV
LEVEL OF OVERLAPPING FOR EACH DATASET

Dataset Generalized Fisher Ratio
Gene 0.1349
Glass 0.7534
Horse 0.1700

Page-Blocks 0.2497
Satimage 1.4764
Thyroid 0.0352

Yeast 0.5980

be modified due to these cases, in which it shows classes less
separated than they probably are.

Further, it is necessary to point out that overlapping degree
is not the only factor that influences the performance of
classifiers in imbalanced domains, e.g., complexity of classes
[20], [21].

Table V shows the comparison among VDBC (with FR),
MLP with 100 hidden neurons (MLP100) and CART clas-
sifiers. These classifiers were chosen after a previous study
[22], which showed MLP100 and CART as very sensitive and
moderately sensitive (respectively) to class imbalance.

The MLP classifier showed a different behavior than the
obtained in [22]. It did not show to be very sensitive to class
imbalance with the presence of multiple classes. This behavior
might be related to the increasing of different class concepts.
As some pairs of classes are naturally far from each other, the
effects of imbalance is not “widespread”. However the MLP
was worse than VDBC in all datasets, even comparing to the
original version of VDBC.

CART behaved as expected for a non tuned and moder-
ately sensitive classifier. VDBC lost in only two of seven
datasets, however it still had a good performance — near
90% of success. It is interesting to notice that CART only
performs better when the number of classes is small. Although
Horse dataset has also three classes it showed challenging for
classical classifiers.

Table VI presents the comparisons with ad hoc methods.
The values for AdaBoost.NC were those with random over-
sampling and λ parameter set to 9, as in the original paper
[2]. From this paper we also drawn the MAUC values for
SMOTEBoost.

As expected ad hoc methods were able to achieve better
performances. However VDBC did not performed too worse.
On the contrary it achieved, sometimes, better or equivalent
results than some of the classifiers, although never better
than all of them at the same time. These results show the
potentiality of VDBC as it does not use more than one
classifier in ensemble fashion, as its ad hoc competitors.

A graphical summary of comparisons is shown in Fig. 2. In
this figure the performance of VDBC is shown in x-axis, while
classical and ad hoc methods are shown in y-axis. Points below
the diagonal (y = x) correspond to data sets where the proposed
approach performs better than the compared methods. This
figure confirms VDBC’s potentiality as it shows clearly that

the proposed classification model was able to reach ensemble
ad hoc methods performances.

Fig. 2. Comparison of performance results among the Proposed approach
(x-axis), the classical and ad hoc methods (y-axis).

To finish we wish to point that VDBC is feasible for
its purpose. Observing its performance in comparison with
ad hoc methods, which use ensemble, we can see that this
simpler algorithm has a great potentiality. Nevertheless, new
approaches are still necessary to be evaluated, including the
use of ensembles.

V. CONCLUSION

In machine learning the study on imbalance problems is
receiving an increased attention, as many real world data sets
show at least a minimum degree of imbalance among their
classes. This imbalance is responsible for several problems,
mainly the misdirection of results.

In the literature there exist lots of works related to the
imbalance binary case. However, as there are imbalanced data
sets with more than two classes, this case is also receiving
attention from researches. The most common approach to
multiclass problem is the use of binarization techniques, also
called decomposition techniques. However this case may be
treated with classifiers that are able to handle more than two
classes at once.

In this paper we presented a new approach to classify
multiclass imbalanced data sets called VDBC. The classifier is
based on the idea of Voronoi diagrams. With this classification
model the sample space may be divided in several cells, in
which each cell is assigned to a different class. The goal of
this paper was then verify the feasibility of this new approach.

In the training phase we considered the construction of
cells with at least one neighbor and at most five neighbors.
Results showed that increasing the number of neighbors do
not improves performance. The use of SMOTE to increase the
size of the smallest classes also did not result in improvement
of performance. However, creating synthetic training data
between some classes resulted in better performance.



TABLE V
AVERAGE MAUC OF VDBC AND CLASSICAL CLASSIFIERS

Dataset MLP100 CART VDBC
Gene 0.6983±0.0179 0.9304±0.0081 0.8837±0.0107
Glass 0.7352±0.0511 0.8175±0.0396 0.9381±0.0291
Horse 0.5884±0.0379 0.6276±0.0356 0.8429±0.0393

Page-Blocks 0.6981±0.0585 0.8057±0.0338 0.9039±0.0211
Satimage 0.8375±0.0070 0.9066±0.0061 0.9816±0.0023
Thyroid 0.7245±0.0459 0.9754±0.0207 0.8999±0.0174

Yeast 0.6466±0.0547 0.6524±0.0235 0.8297±0.0376

TABLE VI
AVERAGE MAUC FOR THE PROPOSED CLASSIFICATION MODEL AND ad hoc CLASSIFIERS

Dataset AdaBoost.NC SMOTEBoost CoMBo VDBC
Glass 0.876±0.037 0.925±0.030 0.947±0.027 0.9381±0.0107

Page-Blocks 0.989±0.004 0.989±0.005 — 0.9039±0.0211
Satimage 0.984±0.002 0.991±0.001 0.976±0.003 0.9816±0.0023

Yeast 0.810±0.020 0.831±0.021 0.861±0.025 0.829±0.0376

Among classical classifiers (MLP100 and CART), VDBC
showed its superiority. Compared with ad hoc methods, it was
observed that our classification model has a great potentiality.
However VDBC still needs more investigation.

Although VDBC did not achieved better performances than
compared ad hoc classifers we must stress that its simplicity
makes it already competitive. Probably few modifications or
tuning shall result in a very efficient classifier for imbalance
data sets.
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