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Abstract—An usual strategy to solve multiclass classification
problems in Machine Learning is to decompose them into
multiple binary sub-problems. The final multiclass prediction is
obtained by a proper combination of the outputs of the binary
classifiers induced in their solution. Decision directed acyclic
graphs (DDAG) can be used to organize and to aggregate
the outputs of the pairwise classifiers from the one-versus-one
(OVO) decomposition. Nonetheless, there are various possible
DDAG structures for problems with many classes. In this
paper evolutionary algorithms are employed to heuristically
find the positions of the OVO binary classifiers in a DDAG.
The objective is to place easier sub-problems at higher levels
of the DDAG hierarchical structure, in order to minimize the
occurrence of cumulative errors. For estimating the complexity
of the binary sub-problems, we employ two indexes which
measure the separability of the classes. The proposed approach
presented sound results in a set of experiments on benchmark
datasets, although random DDAGs also performed quite well.

1. Introduction

Many practical problems involve distinguishing data into
one out of multiple classes. These multiclass problems can
be simplified by their division into simpler and indepen-
dent sets of binary sub-problems [1]. The outputs of the
classifiers induced in their solution are them combined to
obtain the final multiclass predictions. These sub-problems
are usually less complex and easier to solve than their
original multiclass counterpart [2]. There are also Machine
Learning (ML) techniques originally conceived for binary
classification, like Support Vector Machines (SVM) [3], that
benefit from decomposition.

One popular decomposition strategy is one-versus-one
(OVO) [4]. Herewith, each class from the original problem
is confronted to another class, in pairwise combinations,
producing one binary sub-problem for each pair of classes.
A decision directed acyclic graph (DDAG) [5] can be used
to combine the outputs from the OVO classifiers. The DDAG
is a hierarchical structure in which each internal node cor-
responds to a binary predictor for a pair of classes, while

the leaf nodes correspond to the individual classes. For
predicting the class of a new example, the DDAG structure
is traversed from the root node into a leaf, which gives
the final prediction. In order to provide more robustness
to the DDAG overall results, simpler sub-problems should
be evaluated first [6], [7]. By doing such, cumulative errors
can be minimized.

For evaluating the complexity of the OVO pairwise
sub-problems, we employ two indexes from [8] that were
proposed to estimate the difficulty/simplicity of a binary
classification problem. They can be computed from training
data at low computational costs [9]. The first one is the Frac-
tion of Borderline Points (N1), which tries to estimate the
size of the classification border required for separating the
classes. The second measure is the Ratio of Intra/Extra Class
Nearest Neighbor Distances (N2), which reports the ratio of
the distances between close elements from the same class
and from opposite classes. The values of these measures are
used to define the ordering of the OVO classifiers in DDAGs.
Thereby, simpler sub-problems according to N1 and N2 will
be placed at upper levels of the DDAG hierarchy.

As noted in [10], determining the structure of a DDAG
is analogous to solve a traveling salesman problem (TSP)
instance. The objective comes down to finding a proper
ordering of the k classes of the problem. In our case the
ordering should take the values of the complexity measures
into account. The number of possible DDAG structures
rapidly increases as the number of classes increases, making
an exhaustive search impractical. As in [10], in this paper
we employ a genetic algorithm (GA) [11] to find proper
DDAG structures. Here they are evolved according to the
values of the complexity measures N1 or N2, while in
[10] the accuracy of the DDAG structures using SVMs was
estimated in validation datasets. The new approach has some
advantages: there is no need to separate part of the training
data for validation; the structure found is independent of a
specific classification technique; and the cost for estimating
the values of the complexity measures is lower than that
needed for solving the multiclass classification problem
multiple times. Moreover, two other optimization techniques
are also explored in this paper: an estimation of distribution
algorithm (EDA) and a hybrid version of GA and EDA.



For evaluating our proposals, experiments are performed
using benchmark datasets containing from 10 to 26 classes.
Firstly we verified that all optimization techniques were
indeed able to organize the binary classifiers such that
simpler binary sub-problems were placed at the top of the
hierarchies. GA solutions were them chosen to be evaluated
next. Herewith, classifiers were induced using the DDAG
structures and their accuracy in the multiclass problem so-
lution was verified. Multilayer Perceptron Neural Networks
(MLP) [12] were used in the classifiers induction. The
DDAG structures determined by the GA presented predictive
performance close to those of random DDAG structures.
This is an indicative that there is not a large variation in
the results of distinct DDAGs, as observed in [6], [13] for
SVMs too.

This paper is structured as follows. Section 2 describes
the DDAGs. Section 3 presents the data complexity mea-
sures. Section 4 presents how EAs can be applied to de-
termine the structure of DDAGs. Section 5 presents the
methodology adopted in the evaluation of the DDAG struc-
tures. Section 6 presents and discusses the results achieved.
Section 7 concludes this paper.

2. Decomposition of Multiclass Problems

There are many strategies for decomposing a multiclass
problem into multiple binary sub-problems, for example,
one-versus-all (OVA) [14] and the error correcting output
Codes (ECOC) [15]. Recent studies have pointed several
advantages to use one-versus-one (OVO) [4] decomposition
[16]. This strategy produces k(k−1)

2 binary sub-problems,
one for each pair of classes (i, j), where i < j. Binary
classifiers are trained for solving each of the binary sub-
problems generated. New examples should be submitted to
part of or all classifiers whose outputs are joined to obtain
the final multiclass prediction. The most common approach
is to output a majority voting of the predictions.

When majority voting is used with OVO all classifiers
must always be consulted and ties can happen if more than
one class receives the same number of maximum votes.
These problems can be relieved by using a decision directed
acyclic graph (DDAG) [17]. This is a hierarchical structure
where each internal node corresponds to a binary pairwise
predictor, as shown by the three DDAGs in Figure 1. Starting
from the root node, based on the prediction of a classifier,
a class is excluded from further examination. Afterwards,
either a new classifier is consulted or a final prediction is
obtained. Therefore, when classifying a new example, only
k− 1 binary predictors are evaluated. This is a clear advan-
tage of DDAG for combining OVO classifiers. Nonetheless,
the DDAG predictive results are dependent on how the bi-
nary classifiers are positioned within the hierarchy. Consider,
for instance, the three-class classification problem shown in
Figure 1 [18]. The dashed area contains points for which
different predictions are obtained depending on the DDAG
structure, as shown by the three possible DDAG structures
for this problem.

The number of possible DDAGs for a problem with k
classes is k!

2 . Some work have then investigated heuristics to
determine the structure of DDAGs suited for each problem
[6], [13], [19], [20]. In general, the idea is that easier binary
sub-problems should be placed closer to the DDAG root,
minimizing error propagation throughout the hierarchy.

Works [6] and [7] suggest that nodes from upper levels
of the DDAG should contain classifiers with higher gen-
eralization ability. SVMs are employed as base classifiers
and the generalization ability of the binary predictors is
evaluated by leave-one-out error bounds. They obtained
results close to those of the average of several random
DDAG structures. In [19] the DDAG structure is modified
into that of a tree which uses more classification models
and various criteria are employed to estimate the difficulty
in separating the classes. All of them are specific to SVM
classifiers. In [13] a Genetic Algorithm (GA) is employed
to find the permutation of classes in the DDAG, based on
a validation error rate achieved in multiclass classification.
More recently, [20] used cross-validation error estimates to
determine how to place the pairwise classifiers in a DDAG.
They also propose other mechanisms to join the predictions
of the pairwise classifiers.

In this paper we adopt a general approach and less
dependent on a specific classifier. This was accomplished by
using two complexity measures for classification problems
to estimate the difficulty of each binary sub-problem. The
ordering of the pairs of classes pairs is performed by an
evolutionary algorithm according to the calculated values,
so that simpler sub-problems can be evaluated first.

3. Data Complexity Measures

There are several studies devoted to estimate the com-
plexity of a classification problem by extracting indexes
from the available training datasets [21]. In this paper we
employ two indexes from [8], which is a seminal work
from the area. The chosen measures are among the most
successful in characterizing the complexity of binary classi-
fication problems in [8], [21]. They will allow estimating the
complexity of the pairwise sub-problems in OVO according
to different perspectives.

The first measure is the fraction of borderline points,
denoted as N1. Within it, first a minimum spanning tree
(MST) is built using the training data T [8]. The MST will
connect closer points according to their Euclidean distance.
Afterwards, N1 counts the number of points of opposite
classes that are connected in the MST, and divides this value
by n, the total number of examples in T . This gives an
indicative of the size of the border necessary for separating
the classes in T . N1 lies in the [0, 1] interval and higher
values are obtained when many examples from opposite
classes are close to each other. Therefore, larger N1 values
are associated with more complex problems.

The second measure is N2, the ratio of the intra/extra
nearest neighbor distance. For each example xi, the ratio
between the distance from xi to the closest element from its
class and the distance from xi to the closest element from



Figure 1. Classification in shaded area differs according to the DDAG structure adopted

the other class is taken. These ratios are summed up for
all training examples in T . N2 minimum value is 0 and the
upper bound is dependent on the problem. Higher values are
obtained when, for several elements, the distance between
examples from the same class exceeds the distance between
examples from different classes. In this case, the problem
can be considered more complex.

4. Determining the DDAG Structure

A DDAG can be represented by an array structure (in
fact, a same DDAG can be represented by two arrays, since
by symmetry (i, j) = (j, i)). These arrangements correspond
to the ordering of the classes in the bottom level of the
DDAG. For the DDAGs in Figure 1, the lists are (1,3,2),
(1,2,3) and (2,1,3), from left to right.

Evolutionary Algorithms (EAs) [22] have been exten-
sively explored for solving such kind of permutation prob-
lem. EAs are optimization algorithms inspired by principles
of natural evolution. Ordering the classes can be considered
a particular instance of the traveling salesman problem
(TSP), where the objective is to visit k cities once at lower
traveling cost [23]. The first EA used in the generation
of DDAGs was a Genetic algorithm (GA) [13]. GAs are
heuristic methods based on natural selection and genetics.
They operate a population of solutions, which are contin-
uously evolved through the use of genetic operators. The
application of these operators for several generations tends
to make the population converge to a good solution, although
not necessarily the optimal [11].

In [13] GAs were used for defining the ordering of the
k classes in a DDAG that optimized its predictive perfor-
mance in the problem solution. Each individual represents a
possible DDAG as a vector containing a specific sequence
for the k classes, without repetition. The individuals fitness
was estimated by the DDAGs performance in validation
datasets, using SVMs as base classifiers. Classical genetic
operators from the TSP literature were employed [24]:
stochastic tournament selection, partially mapped crossover
(PMX), cycle crossover (CX), order-based crossover (OX)
and insertion mutation. The crossover operators were chosen
probabilistically at each round of the GA.

Here a GA is also used, with tournament selection,
PMX crossover and inversion mutation, both from the TSP
literature [24]. But the fitness function takes into account
the values of the complexity measures N1 or N2. Since the
objective is to place easier problems at upper levels of the

DDAG, the fitness computation will take a weighted sum of
the N1 or N2 values for the pairwise combinations of classes
at each level of the DDAG. The weights are proportional to
the level occupied by each pair of classes in the DDAG. The
first level receives the weight three, which is increased at
steps of two for each new level. They are further normalized
such that all weights are summed to one. Herewith, elements
at bottom levels will contribute most to the fitness value,
forcing the heaviest pairs according to N1 (N2) to be placed
as leaves. Taking, for instance, a problem with three classes
where the N1 values are: 0.3 for the pair 1 vs 2; 0.5 for
the pair 1 vs 3; and 0.8 for the pair 2 vs 3. The fitness
values of the DDAGs shown in Figure 1, from left to right,
would be: 0.57 ((3 ∗ 0.3 + 5 ∗ 0.5 + 5 ∗ 0.8)/(3 + 5 + 5)),
0.54 ((3 ∗ 0.5 + 5 ∗ 0.3 + 5 ∗ 0.8)/(3 + 5 + 5)) and 0.49
((3∗0.8+5∗0.3+5∗0.5)/(3+5+5)), respectively. Therefore,
the first tree would be considered the fittest, which is indeed
the best arrangement in this case, where the easier pair 1 vs
2 is placed at the root of the DDAG.

Another evolutionary algorithm used in this work is
the estimation of distribution algorithm (EDA) [25]. This
method is characterized by using probability models from
the distribution of variables in a population. While GAs
combine two solutions through crossover, EDAs build a
probabilistic model based on existing solutions to generate
new individuals. At each round the EDA selects a proportion
of the best individuals and identify how many times each
class is positioned in their first position, in their second posi-
tion, and so on. This generates a probability order and a new
solution is created based on the highest probability values.
This new solution replaces the individual of lower fitness
in the population. This process is iterated for a number of
cycles. The fitness function and individuals’ representation
are the same as described for GAs.

We also evaluated a hybrid combination of the GA and
EDA algorithms: a random number is generated at each
iteration. If this number is greater than a certain threshold,
the GA is used. Otherwise, the EDA is employed.

5. Methodology

Two evaluations are performed in this paper. Firstly, the
different types of EAs are used to determine the structure of
DDAGs according to the complexity measure values. The
EA achieving best performance measured by our fitness
measure previously described is evaluated next regarding the
multiclass predictive performance of the generated DDAGs.



5.1. Datasets

Ten data sets were selected from the KEEL [26] and
UCI Machine Learning public data repositories [27]. All are
divided according to the 10-fold stratified cross-validation
strategy and normalized. Some characteristics of these
datasets, namely their number of predictive features, classes
and examples and majority error rate (ME) are shown in
Table 1.

TABLE 1. DATASETS USED IN THE EXPERIMENTS.

Name #Attributes #Examples Classes ME
yeast 8 1484 10 0.69
letter 16 20000 26 0.96

movement libras 90 360 15 0.93
led7digit 7 500 10 0.87
optdigits 64 5620 10 0.90
penbased 16 10992 10 0.90
texture 40 5500 11 0.91
vowel 13 990 11 0.91
kr-vs-k 6 28056 18 0.84
isolet 617 6238 26 0.96

All datasets are decomposed according to the OVO
strategy with the KEEL tool1 (Knowledge Extraction based
on Evolutionary Learning) [26], and the N1 and N2 values
are computed on the obtained subsets using the DCOL-v1.1
library2 (Data Complexity Library in C++) [9].

5.2. Fitness Evaluation

All EAs tested have the goal to maximize a fitness func-
tion which takes into account the values of the complexity
measures for each pair of classes. We calculated theoretical
best and worst fitness values that can be achieved for each
dataset. The best case occurs when the pair of classes with
smaller measure value is placed at the root of the DDAG,
followed by the pair with the second lightest value as a
child of this node, and the third as the next child and
so on. These values are positioned as in a width-breath
search, disregarding the classes that were already positioned
in the DDAG. This is an optimistic and probably unrealistic
estimate, since some pairing of classes in the DDAG are
determined by their parent nodes. Therefore, there is a
dependency which is disregarded in the computation of the
best fitness values reported. However, these values provide
a baseline for the best achievable performance. The worst
case is given by the reverse reasoning, starting with the
pair of highest complexity in the root of the DDAG. Again
the dependency of the classes imposed by the hierarchical
structure is disregarded. The EAs have to obtain solutions
with fitness values at least better than this worst case value.

For all EAs, the initial population is generated randomly.
As the results are stochastic, the algorithms were run 20
times for each dataset partition. The size of the tournament
in the GA was pre-set at three, the mutation rate used was

1. http://www.keel.es
2. http://dcol.sourceforge.net/

0.1, the cross-over rate ranged as 0.6, 0.7 and 0.8. The
population size was varied, where the lowest value tested
was 400 and the highest was 2000, considering all tests.
The number of generations or cycles was set from 10 to
25 for all strategies, considering variations of 5 between
tests. In EDA, the rate of best individuals for pooling a
new individual was 0.2. In the hybrid algorithm, the rate
that determines the switch between the use of the GA or
EDA ranged between 0.5 and 0.8, considering variations
of 0.1 between tests. Those parameter combinations giving
the best performance per dataset, using the N1-based fitness
measure, were chosen. The same parameters were adopted
for N2-based fitness EAs.

The average fitness values obtained by all EAs were
compared. Random DDAG structures were also generated
for a baseline comparison (20 per dataset). This analysis
allowed to choose one of the EAs to have their solutions
further evaluated, as described next.

5.3. Predictive Performance Evaluation

The solutions obtained by the best EA were used to
generate multiclass classifiers for the datasets and their
predictive performance was computed. Multilayer Percep-
tron (MLP) neural networks trained with the iRprop [28]
algorithm were used in the classifiers induction. Although
they can be employed directly in the multiclass problem
solution, a previous decomposition of the problem can
possibly simplify its solution. The FANN library3 (Fast
Artificial Neural Library) for C/C ++ language was used
in the implementation of the MLP neural networks.

MLPs require a proper calibration of some parameters
which directly influence their predictive results. A single
hidden layer was used and the number of neurons varied
from 5 to 25, with variations of 5 neurons for each con-
figuration. The learning rate ranged as 0.1, 0.2 and 0.3.
The threshold error error rate for stopping the MLP training
ranged from 0.01 to 0.00001 and the maximum number of
training iterations varied from 50 to 500. The configurations
achieving best predictive results per dataset were chosen.

We also generated MLP classifiers using the random
DDAG structures. The objective is to compare the predictive
results achieved by our optimized structures against those
obtained by random structures. For all classifiers generated,
the average error rate in cross-validation is computed. The
results of the structures obtained by the GA using N1 and
N2 measures in the fitness function are compared to those
from the random structures.

6. Experimental Results

This section presents the results achieved in the exper-
iments performed in this paper. First we evaluate if the
optimization methods are able to find DDAGs combinations
that maximize the fitness measure based on the complexity
of the binary sub-problems. Tables 2 and 3 presents the

3. http://leenissen.dk/fann/wp/



results achieved by all EAs and the random structures using
N1 and N2 in the fitness computations, respectively. The
best results among the EAs and the random structures in
each dataset are highlighted in boldface, while the worst
results are highlighted in italics. The tables also present the
theoretical best and worst fitness values for each measure.

All search strategies, including the random one, per-
formed better than the worst case theoretical baseline. In-
deed, the results are always within the minimum (best) and
maximum (worst) achievable values. For some datasets, as
opt, pen and tex, most of the strategies are able to achieve
the “Best” performance. All EAs showed better results than
those reported for the random search and showed to be
able to optimize the fitness function designed. EAs were
also more stable than the random search, as the standard
deviation of their results was always lower (it was null in
most of the cases). Overall, the results of all EAs were
very close for both N1 and N2 measures. Since the GA
is a well-known algorithm and presented consistently the
best results among the EAs, its solutions were chosen to be
further evaluated.

The average and standard deviation of the error rates
achieved by the DDAGs generated randomly and by the
GA using MLPs as base classifiers are presented in Table
4. GA-N1 refers to the GA using the N1 measure and GA-
N2 represents the GA using the N2 complexity measure.
The same reasoning applies to the Random columns. Best
predictive results per dataset are highlighted in boldface and
worst results are highlighted in italics.

It is possible to observe that all DDAGs presented
close predictive results, despite of the: complexity measure
employed (N1 or N2) or search strategy (GA or random).
The standard deviation of the results were always low. It is
interesting to notice that a random sampling of the DDAG
structures already present very good results concerning their
predictive performance in the multiclass problems solution.
This was also observed for SVMs classifiers in [13]. As
SVMs, MLPs usually show a high generalization ability,
which may partially justify this behavior. However, it should
be noticed that for some specific datasets (mov, tex, krv and
iso) the predictive results are low for all strategies. These
datasets are characterized by a high class imbalance, which
may have impaired the classifiers performance. But this can
also be result of a poor calibration of the MLP parameter
values.

7. Conclusion

In this work, a search approach was employed to deter-
mine the best DDAG structure for solving a given multiclass
classification problem. Two complexity measures are used
for guiding the placement of the pairs of classes in the
DDAG hierarchy. The objective is to place easier binary
sub-problems at upper levels of the DDAGs, while the most
difficult pairings should be left to bottom levels. Three
EAs using a fitness measure that considers the values of
these measures were implemented: a GA, an EDA and an
hybrid combination of the previous meta-heuristics. The GA

showed satisfactory results in this search and the DDAG
structures found by this EA were then evaluated regarding
their predictive ability in the multiclass problems solution.
MLPs were employed as base classifiers. In this case the
random sampling performed well and the DDAGs found had
predictive performance equal to that of the GA solutions.
This can be attributed to the fact that the DDAG results
do not vary too much for distinct structures. Nonetheless,
more tests are needed to corroborate these results, mainly
with other classification techniques and for problems with
more classes.one relevant investigation would be to verify if
multiple random DDAGs perform equally well for problems
with more classes and when other classification techniques
are employed as base classifiers.

As future work we shall investigate the use of other data
complexity measures for optimizing the DDAG structure.
Other ML techniques, specially SVMs, which are originally
conceived for binary classification problems, can also be
employed in the classifiers generation. And we consider per-
forming experiments for datasets with more classes, where
we expect that the predictive results for distinct DDAG
strutures will vary more. It would be equally interesting to
adapt the DDAG structure according to each example being
classified, which can possibly improve the predictive results
achieved.
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