
Towards Knowledge Transfer in Deep
Reinforcement Learning

Ruben Glatt, Felipe Leno da Silva, and Anna Helena Reali Costa*
Escola Politécnica da Universidade de São Paulo, Brazil

{ruben.glatt,f.leno,anna.reali}@usp.br

Abstract—Driven by recent developments in the area of Ar-
tificial Intelligence research, a promising new technology for
building intelligent agents has evolved. The technology is termed
Deep Reinforcement Learning (DRL) and combines the classic
field of Reinforcement Learning (RL) with the representational
power of modern Deep Learning approaches. DRL enables
solutions for difficult and high dimensional tasks, such as Atari
game playing, for which previously proposed RL methods were
inadequate. However, these new solution approaches still take a
long time to learn how to actuate in such domains and so far
are mainly researched for single task scenarios. The ability to
generalize gathered knowledge and transfer it to another task has
been researched for classical RL, but remains an open problem
for the DRL domain. Consequently, in this article we evaluate
under which conditions the application of Transfer Learning
(TL) to the DRL domain improves the learning of a new task.
Our results indicate that TL can greatly accelerate DRL when
transferring knowledge from similar tasks, and that the similarity
between tasks plays a key role in the success or failure of
knowledge transfer.

I. INTRODUCTION

A technique that has been gaining a lot of publicity lately
is Deep Learning (DL), which has driven many of the recent
Machine Learning (ML) developments by profiting from the
comeback of neural networks (NN) in Artificial Intelligence
(AI) research. DL allows to learn abstract representations of
high dimensional input data and can be used to improve many
existing ML techniques [1]. DL architectures became one of
the most powerful tools in AI in short time, beating long
standing records not just in one, but in many domains of
ML, as for example in object recognition, hand-written digit
recognition, speech recognition or recommender systems.

Another technique that can benefit from DL is the well-
researched area of Reinforcement Learning (RL) [2]. In RL, an
agent explores the space of possible strategies or actions in a
given environment, receives a feedback (reward or cost) on the
outcome of the choices made and deduces a behavior policy
from his observations. As shown in Figure 1, an agent can
interact with its environment by performing an action on each
discrete time-step. The environment then answers by updating
the current state to a follow-up state and by giving a reward
to the agent, indicating the value of performing an action in

*We are grateful for the support from CAPES, CNPq (grant 311608/2014-
0), and the São Paulo Research Foundation (FAPESP), grant 2015/16310-4.
The HPC resources for the computation are provided by the Superintendency
of Information at the University of São Paulo. We also thank Google for the
support due to the Google Research Awards 2015 for Latin-America.

a concrete state. By performing various actions in a trial-and-
error manner, a sequence of states s, actions a, follow-up states
s′ and rewards r is generated and can be stored in episodes as
tuples of 〈s, a, s′, r〉. The goal of the agent is to determine a
policy π that maps a state to an action, which maximizes the
accumulated reward over the lifetime of the agent.

This form of decision-making can be modeled as a Markov
Decision Process (MDP) [4]. The core of the MDP is the
Markov Property (MP), which is given if future states of the
process depend only upon the present state and the action
we take in this state, but not on how this state was reached.
Formally an MDP can be described as a tuple of 〈S,A, T,R〉.
In this tuple, S is a finite set of all possible states s, A is a
finite set of all possible actions a, T is the transition function,
which provides a probability of reaching a follow-up state s′

given a state s and an action a, and R is the reward function,
which provides the reward r the agent receives, when reaching
a follow-up state s′ from state s after executing action a.

RL already achieves excellent results in a variety of domains
from the board-game domain [5] to autonomous helicopter
flight [6]. Recent work in combining the power of DL tech-
niques with RL (Deep Reinforcement Learning - DRL) have
led to more powerful intelligent agents, which are now able to
solve problems with high-dimensional input data, like images,
with reasonable computational efforts as demonstrated in the

Fig. 1. Principal sketch of Reinforcement Learning in the Atari game playing
domain for single task learning [3].



Atari game playing domain by [7].
Although this evolution led to excellent results for single

task learning, it still does not provide significant improvements
in multi task learning scenarios. Multi task learning can be
considered a challenge for Transfer Learning (TL), which
supports the ability to generalize gathered knowledge in one
or several source tasks and transfer it to other tasks, offering
the advantage of not having to learn every task from scratch
because it relies on abstractions of past experiences [8]. Taylor
and Stone [9] name three main developments for the latest
interest in the topic: (1) RL techniques have achieved very
notable successes and outperformed other ML techniques for
a variety of difficult tasks in agent theory, (2) other classical
ML techniques have matured enough to assist with TL, and
(3) the initial results show that this combination can be very
effective and has a positive effect on various aspects of RL.
They also conclude that there is considerable room for more
work in the area, a fact that is still true today.

Given those developments, our long-term ambition is to
find ways which enable successful transfer of knowledge in
DRL. In this article we present a novel empirical evaluation
to understand the outcomes from Transfer Learning in DRL
domains. In our experimental scenario, a new target task
is presented to an agent that has access to the knowledge
acquired in already solved source tasks, and the effects of the
previous knowledge on the learning process are evaluated. Our
experimental results indicate that the transfer of knowledge can
be either benefitial to the agent, neutral, or even hamper the
learning, depending on the similarity between the source and
target tasks.

The remainder of this article is organized as follows: In
Section II we outline the underlying principles of DRL and
related work. In Section III we describe the TL approach, its
challenges and examples from the literature. In Section IV
we introduce our proposal. In Section V we present our
experiments and discuss the results. The article closes with
Section VI, where we specify possible next research steps.

II. BACKGROUND AND RELATED WORK

The methods to solve RL problems can be divided into
three main groups: critic-only, actor-only, and actor-critic
methods. In this context we are concerned with critic-only
methods, which in general use a Temporal Difference (TD)
approach to solve the RL problem. TD methods are related
to Monte Carlo methods [10], because they rely on sampling
from the environment for the learning task, and to Dynamic
Programming [11], because they approximate future results
from past experiences. A popular example of TD methods is
the Q-Learning algorithm [12], where the optimal action-value
function Q∗(s, a) is estimated by a function approximator.
An advantage of this method is that it is model-free, which
means that it can directly learn the policy without learning the
transition and reward functions of the MDP explicitly. Another
advantage is, that it can be trained off-policy, following a
strategy that ensures adequate behaviour to balance exploration
and exploitation while exploring the state space. The function

approximator is formulated as a Bellman equation [13], which
was shown to converge to an optimal solution, if the function
is updated iteratively indefinitely, Qi → Q∗, i → ∞. The
optimal Q-value reflects the expected sum of the immediate
reward r and the maximal discounted reward for future actions,
assuming optimal behaviour in the future,

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)|s, a]. (1)

The policy describes a mapping from a state to an action
and the optimal policy π∗ is then defined by choosing the
action a, which maximizes Q∗(s, a) for a given state s:

π∗(s) = argmax
a∈A(s)

Q∗(s, a). (2)

Although it is not a new idea to use a NN as function
approximator for RL problems, as shown for example in
Fitted Q-Learning [14], advances in algorithms for DL have
brought upon a new wave of successful applications. The
break-through work for this new approach was first published
in 2013 as a workshop presentation and later refined in an
extensive journal article for the Atari game playing domain
[7]. The authors use a combination of convolutional and fully-
connected layers to approximate the possible Q-values for a
given state, nominated Deep Q-Network (DQN). The results
demonstrate that a single architecture can successfully learn
control policies in a variety of different tasks without using
prior knowledge.

The algorithm is described in Algorithm 1, where the
states are sequences of images x and actions a, st =
x1, a1, x2, a2, ..., at−1, xt, and φ(s) is a preprocessing func-
tion, which applies some steps to reduce input dimensionality
and stacks the m (here 4) most recent frames to produce the
input for the DQN, so that the requirement of full observability
for MDPs is not violated. The Q-function is then described as
Q(φ, a; θ), where θ represents the weights of the network.
The approach differs from standard Q-Learning mainly in
two ways to make it suitable for training large NN without
diverging. The first difference is the use of experience replay,
a form of batch learning, where the agent stores its experience
at each time-step et = (st, at, rt, st+1) in a replay memory
Dt = {e1, ..., et}. During training the agent then draws off-
policy random experiences from Dt to improve data efficiency,
break up correlations and eliminate unwanted feedback-loops.
The second difference is the introduction of a target DQN
Q̂(φ, a, θ−), which is updated with the weights θ of the
training DQN Q(φ, a, θ) only every C time-steps. This adds
a delay between updating the parameters and the effect on the
trained network and makes the algorithm more stable against
oscillations and divergence.

The weights of the network can be trained by optimizing
the loss function of the network

Li(θi) = E
[((

r + γmax
a′

Q̂(s′, a′; θ−i )
)
−Q(s, a; θi)

)2]
.

(3)



Algorithm 1 Deep Q-Learning with experience replay
1: Initialize replay memory D
2: Initialize training action-value function Q(φ, a, θ) with

random weights θ
3: Initialize target action-value function Q̂(φ, a, θ−) with

weights θ− = θ
4: repeat (for each episode )
5: initialize s1 = {x1} and preprocessed sequence φ1 =
φ(s1)

6: repeat (for each time-step in episode)
7: Choose action at in φt following ε-greedy strategy

in Q(φt, a, θ)
8: Observe new image xt+1 and reward rt
9: Set state st+1 ← st, at, xt+1 and preprocess
φt+1 = φ(st+1)

10: Store transition (φt, at, rt, φt+1) in D
11: Sample random minibatch of transitions

(φj , aj , rj , φj+1) from D
12: repeat (for each transition in minibatch)
13: if episode terminates at step j + 1 then
14: set yj ← rj
15: else
16: set yj ← rj + γmaxa Q̂(φj , a, θ

−)
17: end if
18: Perform gradient descent step on (yj −

Q(φj , aj , θ))
2 with respect to network parameters θ

19: until no more elements in minibatch
20: Every C steps do Q̂← Q
21: Set φt ← φt+1 and st ← st+1

22: until episode ends
23: until no more episodes

Differentiating the loss function with respect to the weights
then leads to the gradient, which will be used for the gradient
descent:

∇θiLi(θi) = E
[((

r + γmax
a′

Q̂(s′, a′; θ−i )
)
−

Q(s, a; θi)
)
∇θiQ(s, a; θi

]
.

(4)

In this context the trained DQN can be seen as a kind of
end-to-end RL approach, where the agent can learn a policy
directly from its input data without having to find a suitable
representation manually first. This is especially interesting,
because it offers the opportunity to efficiently work with
high dimensional input data and opens up a lot of possible
applications, which were too expensive to solve before.

Other researchers already picked up the idea and started
to work with the DQN basic structure to improve results
and learning speed. The authors of [15] introduce an exten-
sion of the DQN by adding a Long Short Term Memory
(LSTM) in the form of an additional recurrent layer after
the convolution layers to improve performance on partially
observed states. Another extension of the DQN was proposed
by [16] to reduce overestimation of action values and improve

performance on a number of games by decoupling the action
selection from the action evaluation. Another publication in
this domain integrates an actor-critic structure with a Deep
Deterministic Policy Gradient technique and shows that it can
also learn competitive policies for low dimensional input data
[17]. Introducing Gorila (General Reinforcement Learning
Architecture), there have also been massive improvements
on the computational architecture of the DQN to allow for
distributed computation with parallel actors, shared experience
replay, and distributed NN, leading to better results and speed-
ups by an order of magnitude [18]. The role and importance
of the experience replay has been researched in [19], where
a framework for prioritizing experience is proposed, so as
to replay important transitions more frequently, and therefore
learn more efficiently.

III. TRANSFER LEARNING FOR DEEP Q-NETWORKS

In ML many approaches have achieved good solutions for
single task learning. A remaining problem is the generalization
of these approaches to allow faster and more efficient multi
task learning. The idea of using accumulated knowledge for
this kind of problems is taken from the human learning ability,
which works quite similar. TL emerged from the need to solve
this problem and many researchers have focused on expanding
ML algorithms with the ability to transfer knowledge, expe-
rience or skills to allow the learning of follow up tasks with
very few examples. An example for a promising approach is
the introduction of an option framework to support knowledge
transfer, which provides methods for RL agents to build new
high-level skills [20]. Another method is proposed in [21],
which shows that building stochastic abstract policies that
generalize over past experiences is effective for transferring
knowledge represented as a stochastic abstract policy.

Regardless of many positive results, there are still some
challenges, which need further research. One of those is how to
handle the problem of negative transfer, when the transferred
knowledge decreases the expected result instead of improving
it. Another one is the determination of when a task or a
domain is suitable for transfer and what causes this limitation.
Knowing about the similarity degree between two tasks could
also provide information about how much training would be
necessary to achieve acceptable results in a target task. A
final example of the open challenges is the ability to separate
data that is necessary for a transfer from data that would just
provide an irrelevant bias. In regard to a TL for RL setup, it is
not clear how to organize the knowledge transfer across tasks
with very different reward functions.

Although there has been much work in the DRL domain
lately, the focus seems to be heavily on single task learning. An
earlier work, unrelated to DQNs, argues that Deep Convolu-
tional NNs are particularly well suited for knowledge transfer
and envisions creating a net that could learn new concepts
throughout its lifetime [22]. One of the rare published works
concerned with bridging the gap between single and multi task
learning for DQNs introduces an Actor-Mimic method, which
trains a general Single Policy Network (SPN) for a variety of



distinct tasks using the guidance of several expert networks.
The SPN then generalizes well for new tasks, even without
expert guidance [23].

IV. PROPOSAL

Apart from the before mentioned work, a thorough literature
review has yet found little evidence on research that aims at
combining the advantages of knowledge transfer with DQNs,
although it represents a great opportunity to advance the state
of the art towards general purpose AI agents. Since each of the
techniques involved provides successful methods to deal with
different aspects of learning in AI, but also has shortcomings
in certain areas, a combination of these approaches may be
able to solve harder problems and improve results on existing
ones.

We find that not much discussion has been dedicated to
analyze under which situations TL is useful for DQN and what
consequences arise for the learning agent when TL is blindly
applied. Our proposal in this article is to train a DQN in a
source task and reuse the trained DQN for the initialization
of a new (target) task. The new task is then expected to be
learned faster because of the reused knowledge. However, as
discussed in Section III, Transfer Learning can hamper the
learning process if the tasks are not similar.

Note also that DQNs provide both state and policy abstrac-
tion, and it is not easy to separate these functionalities from
a trained network. Hence, when transferring a DQN from one
task to another we are in fact transferring both the state and
policy abstractions.

We experimentally investigate these assumptions under dif-
ferent scenarios to evaluate when knowledge transfer makes
sense and when the learner is hampered by its previous
knowledge. We also explore the role of similarity between
tasks for the transfer of knowledge in DQNs.

V. EXPERIMENTS

In the Atari game playing domain the agent controls the
actions while playing a selected game with the goal of
maximizing the game score. For each game the agent can
only use the actions that are available for the specific game,
which represent a subset of A = {’NOOP’, ’FIRE’, ’UP’,
’RIGHT’, ’LEFT’, ’DOWN’, ’UPRIGHT’, ’UPLEFT’, ’DOWN-
RIGHT’, ’DOWNLEFT’, ’UPFIRE’, ’RIGHTFIRE’, ’LEFTFIRE’,
’DOWNFIRE’, ’UPRIGHTFIRE’, ’UPLEFTFIRE’, ’DOWNRIGHT-
FIRE’, ’DOWNLEFTFIRE’}. To keep in line with the nomencla-
ture in RL we refer to one game (finishes after loss of all lives)
as one episode and to the score per game step as the reward
per game step. The state space in such games is generally
huge, which is the reason a DQN is used as an approximation
for the state instead of saving all different states in a Q-table.

Our experiments intend to evaluate the possible effects of
TL on DRL. We divided our experiments in two phases: (i)
DRL optimizer definition; and (ii) TL evaluation. While in
the former we evaluate different DRL training algorithms and
select the best one for the second phase, in the latter we
evaluate the performance of TL applied to DRL. We limited

Fig. 2. The games for which DQNs were trained: (a) Atlantis, (b) Boxing,
and (c) Breakout.

our experiments to the games shown in Fig 2, mainly to
provide a controlled scenario and ease the analysis of our
results.

The first phase of our experiments intended to verify if
the choice of optimizer and the number of output nodes
would have an impact on the training of the DQN. Therefore
we compared two state-of-art optimizers: RMSProp [24] and
ADAM [25]. We selected the game Breakout as the benchmark
game for this phase, because we achieved the most stable
results with this game during earlier training runs. As in [7],
the DQN can be trained using only the actions that matters
for the specific game (6 for Breakout). However, another
option is to use all the 18 possible combinations of the Atari
controller. Therefore, we compared 100 epochs of learning
with RMSProp both with 6 outputs and 18 outputs, and ADAM
with 18 outputs.

The results are shown in Figure 3. Our graphs show the
rewards per epoch as a running average over 5 epochs. It
is immediately visible that all different configurations have
a similar behaviour. The distinction between the number of
output nodes does not have an impact on the results of the
game and also did not influence the total training time signif-
icantly. ADAM optimizer learns better at the very beginning
of the training, rising faster on the average game score and
losing less lives earlier. Later, for Breakout between epoch 10
and 15, RMSProp catches up and remains the algorithm with
higher average score and fewer loss of live for the rest of
the 100 epochs. As RMSProp optimizer achieved the overall
best results in average reward per episode, we chose it for
the second phase of our experiment. As the difference in
learning speed with different number of outputs is small, we
performed the training for all possible outputs in the following
experiments.

The second phase of our experiments simulates the follow-
ing situation: A (source) task is given to a learning agent



Fig. 3. Comparison between different settings for a DQN trained for the
game Breakout.

that has no background knowledge. After learning an effective
policy, a new (target) task is presented to the agent. Even
though it has no information about the new task, the previous
knowledge remains accessible to the agent, who has no reason
to neglect his knowledge base.

In order to evaluate the efficiency of TL in different
situations, we firstly trained a DQN for the Breakout game
from scratch, then the learning results are compared under the
following situations:

1) TL from similar tasks: TL is expected to present better
results when the source and target tasks are very similar.
In order to simulate this situations, we perform a new
training phase for Breakout initializing the DQN with a
previously trained DQN also on Breakout.

2) TL from neutral tasks: While in Atlantis an optimal policy
can be achieved by only using the fire actions, they are
mostly useless in Breakout (but they do not lead to terrible
situations either). We here evaluate TL when the source
task is different from the target task, but the optimal
actuation in the source task is not expected to be much
worse than a random policy. After training a DQN for the
game Atlantis, we use it to train a new DQN for Breakout.

3) TL from different tasks: TL is reported to result in negative
transfer when applied carelessly. We here evaluate the
learning performance when starting with a very bad
policy. The game Boxing offers a very different game-
play than Breakout, and also has very different outcomes
when using the same actions. We here train a DQN in
Boxing and also use it to train a new DQN for Breakout.

Figure 4 shows the results for the first situation. The achieved
rewards per episode in the first epochs are much greater
when starting with the transferred DQN, while the number
of episodes per epoch has already decreased to a good level,
meaning that fewer lives are lost during playing the game.
These results show the potential of TL when transferring
knowledge across similar tasks. Figure 5 depicts the results
for the second situation. The number of episodes and average
reward per episodes are similar in both situations, which means
that the transferred knowledge did not help with the DQN
training but also did not lead to worse results than the random
initialization. Finally, Figure 6 presents the results for the
third situation. In this case it is clear that the learned DQN

Fig. 4. Comparison between random initialization of Breakout and initial-
ization with the best performing network for a previously trained DQN for
Breakout.

Fig. 5. Comparison between random initialization of Breakout and initial-
ization with the best performing network for a previously trained DQN for
Atlantis.

Fig. 6. Comparison between random initialization of Breakout and initial-
ization with the best performing network for a previously trained DQN for
Boxing.

suffers from negative transfer. The use of a very unfit policy
when starting the learning process greatly hampered the DQN
optimization, which is shown in the achieved average reward
per episode, which is much worse when comparing to the
random initialization. The influence was so dominant that the
agent was unable to improve his performance until the end of
the 50th epoch.

Our results show that the concern about negative transfer is
also valid for TL in DRL algorithms. Even though TL is very
beneficial to the learning process when the tasks are similar
and neutral when the two domains are not very different, when
dealing with very uncorrelated domains the negative transfer
lets the learner take a long time to overcome the initial bad
actuation. This also means that TL cannot be blindly applied
to DRL, and the similarity of the source and target tasks must



be evaluated before transferring knowledge.

VI. CONCLUSION AND FUTURE WORK

In this article, we evaluated the applicability of TL to DRL
through the evaluation of improvements in the learning process
when transferring knowledge from past tasks with different
degrees of similarity to the target task.

Our results show that the initialization of the DQN plays
a far more important role than the choice of optimization
algorithm of the gradient decent method of the network. The
results also reinforce the importance of being able to start
the learning of a new task with experiences from previously
learned tasks. When transferring knowledge from similar tasks
TL achieved a greatly accelerated learning process, realizing
results closer to the optimal actuation since the beginning of
the training. However, when applied to unrelated tasks, the
negative transfer makes the training performance much worse
and very difficult to recover than with random initialization.

These outcomes show that much of the concerns presented
from researchers when applying TL in classical RL are also
valid for DRL. Being able to find which of the previously
learned tasks are similar to the target task (and possibly
defining the degree of similarity) is directly correlated to the
success or failure when applying TL.

A promising idea as proposed in [26] executes a Policy
Reuse to leverage past knowledge. When facing a new task,
the agent finds similar tasks in a policy library and uses them
to accelerate learning or extends the library. In the domain of
Atari game playing such a library could lead to a collection
of dedicated core policies for different genres of games like
for example jump-and-run, platform or racing.

However, defining a ”similarity degree” between tasks is
not a trivial undertaking. While we defined the similarity of
the learned tasks here through subjective impressions in, this
is not an appropriate procedure to use for the general case,
as we do not have a complete understanding of how the
neural networks generalize tasks and if they can find counter-
intuitive similarities between tasks. An objective similarity
determination is another challenging and unresolved research
task in itself.

Another important research question that is still open is the
definition of the best way to generalize and transfer learning
across tasks. The concept of skill transfer [27] (also referred to
as options, macro-actions or compact policies) is promising to
DRL. These skills are generalizations of extended sequences
of actions to achieve a sub-task and are defined by an option
policy, an initiation set and a termination condition. However,
extracting partial policies from DQNs is still an open problem.

Transferred to the Atari game playing domain, skills could
provide a way to solve more abstract sub-tasks like destroying
an enemy, walking through a door or dodging bullets, or any
tasks which have repeated occurrences in a variety of games.

In conclusion, TL has shown a great potential to accelerate
learning in DRL tasks, but there are still many aspects to
be understood before we can formulate the definition of a
comprehensive framework for knowledge reuse across DQNs.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

[3] D. Silver, “Lecture Notes in advanced topics in Machine Learning:
COMPGI13 (Reinforcement Learning),” 2015, university College Lon-
don, Computer Science Department.

[4] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Hoboken, NJ, USA: John Wiley & Sons, 2014.

[5] G. Tesauro, “Temporal Difference Learning and TD-Gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[6] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, “Autonomous inverted helicopter flight via Reinforcement
Learning,” in Experimental Robotics IX. Springer, 2006, pp. 363–372.

[7] V. Mnih, D. Silver, A. A. Rusu, M. Riedmiller et al., “Human-level
control through Deep Reinforcement Learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[8] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345–1359, 2010.

[9] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning domains: A Survey,” Journal of Machine Learning Research
(JMLR), vol. 10, pp. 1633–1685, 2009.

[10] W. K. Hastings, “Monte Carlo Sampling methods using Markov Chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[11] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, MA, 1995, vol. 1, no. 2.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[13] R. Bellman, “On the theory of Dynamic Programming,” Proc. National
Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[14] M. Riedmiller, “Neural Fitted Q Iteration – first experiences with a
data efficient Neural Reinforcement Learning method,” in Proc. 16th
European Conference on Machine Learning (ECML), 2005, pp. 317–
328.

[15] M. Hausknecht and P. Stone, “Deep Recurrent Q-learning for Partially
Observable MDPs,” in 2015 AAAI Fall Symposium Series, 2015.

[16] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” arXiv preprint arXiv:1509.06461, 2015.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with Deep Reinforcement
Learning,” arXiv preprint arXiv:1509.02971, 2015.

[18] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen et al.,
“Massively parallel methods for Deep Reinforcement Learning,” arXiv
preprint arXiv:1507.04296, 2015.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[20] G. Konidaris, I. Scheidwasser, and A. G. Barto, “Transfer in Rein-
forcement Learning via shared features,” Journal of Machine Learning
Research (JMLR), vol. 13, no. 1, pp. 1333–1371, 2012.

[21] M. L. Koga, V. Freire, and A. H. Costa, “Stochastic Abstract Policies:
Generalizing knowledge to improve Reinforcement Learning,” IEEE
Transactions on Cybernetics, vol. 45, no. 1, pp. 77–88, 2015.

[22] S. Gutstein, O. Fuentes, and E. Freudenthal, “Knowledge transfer in
Deep Convolutional Neural Nets,” International Journal on Artificial
Intelligence Tools (IJAIT), vol. 17, no. 03, pp. 555–567, 2008.

[23] E. Parisotto, L. J. Ba, and R. Salakhutdinov, “Actor-Mimic: Deep
Multitask and Transfer Reinforcement Learning,” Computing Research
Repository (CoRR), vol. abs/1511.06342, 2015. [Online]. Available:
http://arxiv.org/abs/1511.06342

[24] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio, “RMSProp and
equilibrated adaptive learning rates for non-convex optimization,” arXiv
preprint arXiv:1502.04390, 2015.

[25] D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] F. Fernández and M. Veloso, “Probabilistic Policy Reuse in a Reinforce-
ment Learning agent,” in Proc. 5th Autonomous Agents and Multiagent
Systems (AAMAS-06), 2006, pp. 720–727.

[27] G. Konidaris and A. G. Barto, “Building Portable Options: Skill Transfer
in Reinforcement Learning,” in Proc. 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI), vol. 7, 2007, pp. 895–900.


