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Abstract—Being able to detect faults in Hard Disk Drives
(HDD) can lead to significant benefits to computer manufac-
turers, users and storage system providers. As a consequence,
several works have focused on the development of fault detection
algorithms for HDDs. Recently, promising results were achieved
by methods using SMART (Self-Monitoring Analysis and Re-
porting Technology) features and anomaly detection algorithms
based on Mahalanobis distance. Nevertheless, the performance
of such methods can be seriously degraded when the normality
assumption of the data does not hold. As a way to overcome this
issue, we propose a new method for fault detection in HDD based
on a Gaussian Mixture Model (GMM). The proposed method is
tested in a real world dataset and its performance is compared
to three other HDD fault detection methods.

I. INTRODUCTION

Fault detection methods have attracted much attention due
to its possible benefits in various domains. Examples can be
found in [1], [2], [3], [4] and [5]. In general, a fault detection
system analyzes a set of sensor measurements and identifies
the occurrence of anomalies that may indicate incipient fail-
ures (faults) [2]. In the presence of an incipient failure, the
equipment may still be working but will fail in a near future.

In recent years, several works have focused on the de-
velopment of fault detection algorithms with application on
Hard Disk Drives (HDD). This fact may be explained by the
increasing amount of data generated not only by people but
also by machines (Internet of Things) [6]. As a consequence,
the interest in storage services providers has significantly
increased.

Currently, most HDD manufacturers implement the Self-
Monitoring, Analysis and Reporting Technology (SMART).
SMART is a monitoring system that tests several perfor-
mance parameters to detect incipient failures [7]. In SMART
anomalies are detected when any of the SMART parameters
exceeds its threshold. Since the number of false alarms shall
be minimized, the choice of the threshold results in a method
capable of detecting only 3% to 10% of the fault occurrences
[8].

Improving Fault Detection Rate (FDR) with reduced impact
on the False Alarm Rate (FAR) have been the the objective of
several works such as [9], [8], [10] and [11]. In [9] the authors
used a non-parametric hypothesis test to monitor the SMART
parameters and observed some improvements when compared

to the standard SMART algorithm. Better results were also
observed in [8], where the authors used a Support Vector
Machine (SVM) classifier on SMART data. SVM achieved
a FDR of 50.6% with zero FAR. The works of Wang et. al.
[10], [11] modeled the problem as an anomaly detection task,
where a statistical model is built using only fault-free HDDs.
A HDD is detected as faulty if its SMART parameters have
low probability of belonging to the healthy HDDs distribution.
Currently, these works present the best results with FDRs of
67% and 68.4% respectively.

It is important to point that the works that achieved the best
results assume that the healthy HDDs are normally distributed.
Such approach may provide poor results when this assumption
does not hold. A possible solution for this limitation consists
in the use of non-parametric distribution models. Among them,
one can cite the Gaussian Mixture Model (GMM) as one of
the most commonly used. In the GMM, the data distribution
is modeled by a linear combination of a given number of
Gaussians. The combination factors and the parameters of
the Gaussians are usually estimated using the Expectation-
Maximization (EM) algorithm [12].

The following paper presents a fault detection method with
application on Hard Disk Drives. The fault detection algorithm
is based on the use of a GMM to model the distribution of
SMART data from healthy HDDs. For a HDD at a given time
instant, a window of time delayed SMART data are compared
to the GMM model and a set of estimators are calculated to
verify the state of health of the equipment. The performance of
the proposed method is assessed on a real world HDD failure
dataset and showed promising.

The remainder of this paper is as follows: In Section II
presents the theoretical background. Section III describes our
proposed method for fault detection. In Section IV, we discuss
the experimental results comparing with related works. Some
directions of the future work and conclusion are presented in
Section V.

II. THEORETICAL BACKGROUND

For a successful understanding of our proposal this section
describes two methods (RFE and GMM) that are part of the
proposed approach. The Recursive Feature Elimination (RFE)
is a feature selection algorithm and the Gaussian Mixture



Model (GMM) is a non-parametric density estimation method.
In addition to that, a fault detection performance metric, the
Receiver Operating Characteristic (ROC) curve, is presented.

A. Recursive Feature Elimination

Recursive Feature Elimination (RFE) [13] is a widely-
used feature selection algorithm which eliminates low weight
features until a predefined number of features are left. RFE was
chosen because it selects a feature subset which provides the
best fault detection accuracy. RFE also alleviates the problem
of overfitting, improving the performance of the model. An
external estimator is used to assign weights to features and
it’s trained in every step of the process. First, the estimator is
trained on the initial set of features and weights are assigned
to each one of them. Then, features whose absolute weights
are the smallest are eliminated from the current set features.
The process is repeated until the desired number of features
is reached.

RFE has been successfully employed in a number of appli-
cations, such as genetics [13], agroindustrial problems [14],
among others. A common approach is to use RFE with a
linear Support Vector Machine (SVM) classifier to select the
features to be eliminated, where the feature ranking consist of
weight values which are given by the correlation coefficients
of the support vectors. Even though the method was originally
conceived to work with SVM, it can be easily extended to use
other classifiers, such as Random Forest (RF) [14].

B. Gaussian Mixture Model (GMM)

A Gaussian mixture model (GMM) is a statistical model
that has the form of a weighted sum of Gaussian distributions.
More formally, a GMM is given by the equation,

p(x|λ) =

M∑
i=1

wiN (x|µi,Σi), (1)

where x is a m-dimensional vector, wi is the weight of the i-th
Gaussian, λ is its respective vector of parameters, M is the
number of Gaussian and N (x|µi,Σi) is a probability density
function of the Gaussian distribution, defined by:

N (x|µi,Σi) =
exp

(
−1

2(x− µi)
TΣi

−1(x− µi)
)

√
(2π)D|Σi|

, (2)

with mean vector µi and covariance matrix Σi. The mixture
weights satisfy the following constraint:

∑M
i=1 wi = 1. The

parameters of the density model are collectively represented
as λ = {wi, µi,Σi}, where i = 1, ...,M .

Given the training data, the maximum likelihood model
parameters are estimated using the iterative Expectation-
Maximization algorithm (EM). The EM algorithm [12] is
the most popular technique used to estimate parameters of
a mixture given a fixed number of mixture components, and
it can be used to compute the parameters of any parametric
mixture distribution.
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Fig. 1. Example of applying a Gaussian Mixture Model to fit the distribution
of a set of points. Image 1 (a) shows two separate Gaussians fitting a subset
of the original points. Image 1 (b) shows a mixture model composed of two
Gaussians.

Figure 1 shows an example of fitting a mixture model on a
set of points. Two subsets of points are clearly distinguishable
in the original set. Figure 1 (a) shows how each subset would
be fitted by an individual Gaussian. Figure 1 (b) shows a GMM
approximation composed of two Gaussians, which was able to
correctly capture the behavior of the whole set.

The number of Gaussian distributions is a free parameter
when fitting a mixture model. To find a optimal number of
Gaussians to fit the model, the Bayesian Information Criterion
(BIC) [15] can be used. BIC is an information criteria that tries
to balance the log-likelihood function and model complexity,
tending to favor simpler and fitted models [16]. BIC is defined
as:

BIC = −2 · ln L̂+ r · ln(n), (3)

where L̂ is the maximized value of the likelihood function of
the model, r is the number of free parameters in the model
and n is the sample size. Models with the lowest BIC values
are preferable, since they are less prone to overfitting.

C. Receiver Operating Characteristic (ROC)

A commonly used metric to evaluate the performance of
a binary classifier is the Receiver Operating Characteristic
(ROC) curve [17]. The ROC curve is a two-dimensional plot
which illustrates the relationship between False Alarm Rate
(FAR) and Fault Detection Rate (FDR). A false alarm (also
called as a false positive) is a statistical error that incorrectly
classifies the HDD as unhealthy when it is in fact healthy. On
the other hand, a fault detection (also known as a true positive)
is determined when a HDD is classified as faulty when it is
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Fig. 2. Workflow of our method for fault detection. It involves the initial step of Data Preparation followed of Baseline Model and Fault Detection steps.

indeed. Generally, FAR is plotted on the horizontal axis, while
FDR is plotted on the vertical axis. FAR is the ratio of the false
alarmed HDDs to the total healthy HDDs. It is, for instance:

FAR =
nfa
NH

, (4)

where nfa is the number of false alarmed HDDs and NH is
the total number of healthy HDDs.

FDR can be defined as the ratio of the detected unhealthy
HDDs to the total unhealthy HDDs. It is defined as:

FDR =
ndu
NU

, (5)

where ndu is the number of detected unhealthy HDDs and NU

is the total of unhealthy HDDs.
The main idea of ROC curve is to depict the trade-off

between FAR and FDR. That is, a loose classification criteria
could lead to a high FDR but could have the downside of a
high FAR as well. On the other hand, a tight classification
criteria would enforce a low FAR which could imply a low
FDR.

III. PROPOSED METHOD

In this section, we describe the proposed method for fault
detection in hard disk drives. The method is suited to operate
on SMART data. The method is divided into three steps: data
preparation, baseline model construction and fault detection.
Figure 2 shows the scheme of our approach.

The data preparation step begins by applying the RFE
method to select the features and then splitting the dataset
in training data and testing data. The training data is formed
by the early samples (beginning of life) of 60% of the disks
labeled as healthy, randomly selected among all healthy disks.
The test data consists of all the HDDs labeled as faulty and
the healthy disks that are not in the training set.

In the baseline model step, the model is built using GMM
from the training data. Intuitively, this model describes the
behavior of healthy disks.

The fault detection step consists of observing the disks
belonging to the testing set. An estimator is computed from
the comparison between the disk data and the baseline model.
The values returned by the estimator are monitored to verify
if they exceeded a failure threshold.

A. Feature Selection

We run the RFE algorithm to get a rank list according to the
feature importance. The RFE selection method is basically a
recursive process that ranks the features according to its impact
on the performance of a classifier. In this work, we used the
Random Forest (RF) [18] classifier.

RF is an ensemble method that combines several decision
trees. Each tree is fitted to a random sample with replacement
(bootstrap). From out-of-bag samples, the forest chooses the
final class through a voting or an averaging process. This
method proved to achieve good results on many different
datasets [19].

The feature importance might be estimated by Gini criterion
[20]. It is based on the principle of impurity reduction that is
followed in most traditional classification tree algorithms.

B. Baseline Model

In the training procedure, the training data is used to create
a model of healthy HDDs. To represent this model, we fit a
GMM according to the training data. The likelihood function
given by a GMM is used to get a dissimilarity measure from
a data sample, as described in Equation 1. This measure
represents the proximity level between a generic HDD and
a healthy HDD.

To fit the baseline model using a GMM, we need to pick
the number of Gaussians to adequately represent the training
data. In that case, BIC criteria was used to estimate the
optimal number of Gaussians. As explained in Section II-B,
BIC prefers well fitted model and penalizes the complexity of
the GMM.



C. Fault Detection

In this step, we seek to distinguish anomalous behaviors
from healthy behaviors in each disk belonging to the testing set
using a dissimilarity measure based in the likelihood values.
This measure is calculated as the negative log-likelihood of a
disk sample with respect to the GMM adopted in the baseline
model. Our intuition is that healthy disks within the testing
set have small dissimilarity values, that is, they are near to
the baseline model. On the other hand, the failed disks have
high dissimilarity values, meaning that they are far from the
baseline model.

However, if we look only at these dissimilarity values, there
is the possibility of obtaining false alarms due to measurement
errors or some unknown behavior. This problem was also
reported in previous works such as [11], [10]. To minimize it,
we used a sliding window on the dissimilarity values. Instead
of observing only one point at a time, we observe a set of
data within a sliding window of fixed size. The window is
used to group some dissimilarity values in each disk. In this
approach, an anomaly is detected only when several increased
dissimilarity values are present. Figure 3 shows the process to
calculate the estimators for each window.

To detect anomalies, we can compute an estimator over the
dissimilarity values belonging to a window. A similar approach
was also used in [10]. In this work, the author suggests the
use of location changes or scale changes based on estimators.
In our work, we evaluated the mean and variance of the
dissimilarity measures as indicators of anomalies. In this case,
a possible fault is detected when the estimator is greater than
a certain threshold.
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Fig. 3. Sliding window operation on the likelihood values for a given disk
belonging to the testing set. At instant i, the estimator is calculated from first
three likelihood values. In a next instant, the window is moved to the right
(instant i+ 1) and another estimator is calculated.

IV. RESULTS

In this section, we present the experimental results and
implementation details of the proposed method. Moreover, a
comparison is done with other approaches. It is worthy men-
tioning that the results are obtained by averaging the outputs
of 10 experiments. The proposed method was implemented in
Python using scikit-learn package [21] version 0.17.

A. Smart Data Set and Feature Selection

The dataset employed in this paper consists of time series
of SMART features and it was provided by the Center for
Magnetic Recording Research, University of California, San
Diego [8]. This dataset was collected from real HDDs and it
is the same employed by many related works [9], [10], [11].

It includes 369 drives, a total of 68411 samples, from one
model, where 178 drives are labeled as healthy and 191 drives
are labeled as failure. Hard drives labeled as healthy have
passed through a reliability demonstration test executed by the
manufacturer in a controlled environment. On the other hand,
hard drives labeled as failed were returned to the manufacturer
by the users after a failure. The 300 most recent samples
(observations) were saved on disk and collected every two
hours on the operating drives. Only the last 600 hours data
could be recorded (i.e., if the time exceeded 600 hours, the
data were overwritten). Some failed drives have less than 300
samples because they were not able to operate 600 hours. Each
sample also contains features like the drives serial number,
total power-on-hours, and 60 other performance-monitoring
features. Not all features were monitored in every drive, and
the unmonitored features were set to constants.

The application of the RFE method with the Random Forest
estimator returned a set of 8 features1. The estimator was
trained using 3-fold cross validation and forests consisting of
10 trees.

B. GMM-Based Method

The GMM used to fit the baseline model has the optimal
number of Gaussians estimated by the BIC criteria, as ex-
plained in II-B. We configured the GMM with 10 Gaussians,
that was where the BIC value seemed stable and close to a
minimum.

To fit the training set using GMM, 20 iterations of the EM
algorithm were enough to reach the stopping criteria for the
procedure.

C. Performance Evaluation
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Fig. 4. Example of the behavior using variance estimator on the dissimilarity
values of a healthy HDD. During observations, the estimator begins close to
the value 102 and at the end of the experiments reaches peaks of two to three
times the initial value.

The experiments were performed on the testing set, which
consists of all 191 faulty HDDs plus the remaining 72 healthy

1The 8 selected features: Servo5, CSS, FlyHeight2 ,FlyHeight11, Servo10,
FlyHeight3, Writes, Temp4.
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Fig. 5. During observations, the estimator presents large fluctuation during
the lifetime and when it is near failure reaches values of order much upper
than the healthy disk values shown in the Figure 4.
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Fig. 6. ROC curves for the our method using variance estimator with different
window sizes (6, 12, 18) in the interval between 0% to 5% of FAR.

disks. Figures 4 and 5 show typical behaviors of the variance
estimator calculated for a healthy and a faulty HDD.

For the healthy disk, the variance values are at a similar
level with a slight increase in the end of the data series. On
the other hand, the variance values for a faulty disk present
a significant increase which may indicate an incipient failure.
Note that the values are on a logarithmic scale.

The mean and variance estimators are evaluated to compose
our method using the performance of the ROC curve at 0%
FAR, which every healthy HDD is correctly labeled. For each
estimator, we compare the window sizes of 6, 12 and 18, which
correspond respectively to the windows of 12, 24 and 36 hours,
since the samples were collected every 2 hours. Figure 6 shows
the performance of the variance estimator for each window
size and Figure 7 shows for the mean estimator.

Both estimators presented values close to each other but for
small window sizes the variance seemed slightly better than
the mean. It is preferable use small windows because with less
points is possible to detect anomalies earlier. For this reason,
the posterior analyzes will be conducted with window size of
6.
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Fig. 7. ROC curves for the our method using mean estimator with different
window sizes (6, 12, 18) in the interval between 0% to 5% of FAR.

As mentioned in Section I, we compare our results to a set
of methods applied to the same dataset. Figure 8 shows the
ROC curves obtained by TSP [11], FSMD [10], SVM [8] and
our method using variance and mean estimators.

Our method achieved a FDR of 80.59% with 0% FAR using
the variance estimator and 74.41% using the mean estimator.
TSP, FSMD and SVM returned 68.42%, 67.02% and 50.6%,
respectively. Considering these, we can state that our method
had an improvement of 12% when compared to the best
available method.

A possible explanation relies on the fact that the best results
were obtained by methods which assume that the data are
normally distributed [10] [11]. Since this assumption may not
hold on in most cases, a GMM can be a better option to model
the behavior of the healthy disks.

Concerning the computational complexity, TSP and FSMD
methods are essentially bounded by the Mahalanobis distance
measure. In order to compute this distance, it is necessary to
calculate the covariance matrix. This process has a complexity
of O(nm2) when n > m, where n is the number of obser-
vations and m is the number of features. In our method, the
complexity is essentially given by the GMM, where the EM
algorithm with M Gaussians requires O(nm2M) operations
per iteration [22].

Considering the 10 Gaussians used to train the GMM and
the 20 iterations of the EM algorithm, our method executes
a number of computations in the order of 200 times greater
than the TSP and FSMD methods. It should be noticed that
this time is spent only in the offline training step.

V. CONCLUSIONS AND FUTURE WORK

An approach based on a non-parametric model is presented
for fault detection in hard disk drives. To begin, a feature
selection is done using RFE with RF. A baseline model is
built upon a subset of healthy HDDs (training set) using a
GMM. For a given HDD, a dissimilarity measure is computed
from the baseline model. This measure is grouped in a sliding
window and an estimator is calculated on window values.
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Fig. 8. ROC curves for all methods in the interval between 0% to 5% of
FAR.

A failure is detected when an estimator returns a value that
exceeds a certain threshold.

On the basis of our experiments we can state that our
method outperformed previous HDD fault detection works
(TSP, FSMD and SVM). We achieved 80.59% FDR at 0%
FAR against 68.42% of the TSP method, the best previous re-
sult. Although the proposed method has a high computational
complexity, this is only observable in the training phase, which
is offline.

Finally, future works could take into account the growth of
the estimator measure and get strategies for failure predictions
in HDDs.
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