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Abstract—In this paper, we present a novel supervised learning
algorithm for object recognition from sets of images, where the
sets describe most of the variation in an object’s appearance
caused by lighting, pose and view angle. In this scenario,
generalized mutual subspace method (gMSM) has attracted
attention for image-set matching due to its advantages in accu-
racy and robustness. However, gMSM employs PCA, which has
high computational cost contrasting to state-of-art appearance-
based methods. To create a faster method, we replace the
traditional PCA by 2D-PCA and variants on gMSM framework.
In general, 2D-PCA and variants require less memory resource
than conventional PCA since its covariance matrix is calculated
directly from two-dimensional matrices. The introduced method
has the advantage of representing the subspaces in a more
compact manner, providing reasonably competitive recognition
rate comparing to the traditional MSM, confirming the suitability
of employing 2D-PCA and variants on gMSM framework. These
results have been revealed through experimentation conducted
on five widely used datasets.

I. INTRODUCTION

Classification and similarity between sets of images have
been some of the crucial concerns in computer vision and
image retrieval. Sets of images are able to represent the
intrinsic variability of objects that have complicated shapes,
producing more meaningful information for classification.
Single-view image matching presents various drawbacks [1],
such as: impossibility to recover a three-dimensional object
from its two-dimensional single-view image (unless some
restrictive assumptions about the real world are applied as prior
knowledge), complex three-dimensional objects might cause
self-occlusion and some features, necessary for recognition,
might be lost. In this scenario, subspace-based approaches [2],
have been employed in several computer vision applications,
due to its considerable flexibility in dealing with multiple class
problems and its straightforward implementation.

In subspace-based approaches, sets of images are expressed
by its embedded subspace spanned by sets of basis vectors,
where most of the variability of the image set is retained,
requiring less memory for storage and speeding up the match-
ing time. The subspace representation is achieved by principal
component analysis (PCA) [3], which is optimal to achieve
a subspace that minimizes the mean square error. This repre-
sentation simplifies the classification of sets of images through
the use of multiple canonical angles [4].

Following this main concept, generalized mutual subspace
method (gMSM) [5] is a statistical pattern recognition method
where each set of images is represented by a subspace and the
similarity between these subspaces are determined by the use
of multiple canonical angles. In gMSM, each subspace has
a vector soft weigh, based on the eigenvalues. This approach
differs from generalized difference subspace (GDS) [6], where
only the eigenvectors with the highest eigenvalues are con-
sidered as basis vectors and the remainder are discarded. By
employing weighed basis vectors to represent the subspaces,
gMSM achieves high recognition performance.

Although gMSM has been employed successfully in the
classification of sets of images, its performance is not satis-
factory for more advanced systems, which more complicated
structures should be classified, such as real-time systems,
where memory requirements, algorithm complexity and exe-
cution time are critical components. Such systems are largely
employed in augmented reality, where the applications would
provide assistance to the users in medical procedures, edu-
cational systems and industrial design. In short, this issue is
resulted from the fact that gMSM employs PCA in order to
generate the subspaces as follows: First, each two-dimensional
image from a set is reshaped to one-dimensional vector. Then,
a covariance matrix is computed from these reshaped images.
And finally, a set of basis vectors is generated from this
covariance matrix and its weights are computed based on its
eigenvalues. This reshaping procedure leads to a very high
dimensional vector space, where the spatial structure of the
reshaped images might be broken.

To overcome these drawbacks of gMSM, motivated by
(2D-PCA) [7], we propose a two-dimensional generalized
mutual subspace method (2D-gMSM) to speed up the learning
and the matching processing times. The main difference be-
tween PCA and 2D-PCA is that 2D-PCA employs the image
matrix directly, without vectoring the patterns, to generate
the covariance matrix. Instead, in PCA, the matrix images
are firstly vectorized, creating a covariance matrix which
is larger than the covariance matrix produced by 2D-PCA.
Since gMSM systematically operates on all the basis vectors
produced by PCA, replacing PCA by 2D-PCA reduces the
memory cost, as the basis vectors produced by 2D-PCA are
more compact compared to the produced by PCA. As a
consequence, 2D-gMSM is much more efficient than gMSM



both in terms of memory complexity and time complexity.
Therefore, 2D-gMSM presents three important improvements
over conventional gMSM. First, 2D-gMSM operates on more
meaningful subspaces, since the spatial structure of the images
is preserved. Second, 2D-MSM is capable of handle RGB-D
information, without the vectorization of the patterns, achiev-
ing more discriminative features. Third, the processing time to
compute each subspace and memory requirements are reduced,
due to the compactness of the subspaces achieved by 2D-PCA.

The organization of this work is as follows: Section 2
describe related work on image set classification and details
the 2D-PCA and its variants. Then, in Section 3, we develop
the two-dimensional generalized mutual subspace method for
image set classification by introducing 2D-PCA and its vari-
ants on gMSM framework. Section 4 shows the advantages
of the proposed method over the conventional gMSM by
experimental results using ALOI [8] object dataset, RGB-
D [9] object dataset, Honda/UCSD [10], YouTube Celebrities
(YTC) [11] and PubFig83 [12] for face recognition. Finally,
conclusions are discussed in Section 5.

II. RELATED WORK

In this section, we briefly describe 2D-PCA [7] and its vari-
ants: alternative 2D-PCA [13], Extended 2D-PCA [14], Color-
PCA [15] and cross grouping 2D-PCA (C2D-PCA) [16]. This
description is important in order to analyze the differences
between traditional PCA and 2D-PCA variants. Although 2D-
PCA have been developed a decade ago, recently several
variants have been proposed, including cross grouping 2D-
PCA [16]. In our paper, we investigate five 2D-PCA variants
in order to identify the most suitable 2D-PCA variant that
produces the best trade-off between accuracy and processing
times. Therefore, it is important to analyze the impact of
employing each variant.

A. 2D-PCA and its Variants
In PCA, the theory states that the two-dimensional samples

should be initially reshaped to one-dimensional vectors; other-
wise, PCA cannot be employed. This reshaping process may
break the structural information of the two-dimensional sam-
ples. In order to overcome this issue, 2D-PCA [7] was the first
successful effort to apply PCA directly on two-dimensional
images without reshaping the two-dimensional images into
one-dimensional vectors. 2D-PCA inherits the same capa-
bilities of the conventional PCA; however, its covariance
matrix is calculated straightforwardly from two-dimensional
matrices, instead of one-dimensional vectors. Therefore, the
basis vectors achieved by 2D-PCA is much smaller than the
basis vectors generated by the traditional PCA. In order to
clarify this concept, let us consider G2D a 2D-PCA covariance
matrix, which can be computed by:

G2D =
1

M

M∑
i=1

(Ai −Aµ)T (Ai −Aµ), (1)

where A = {Ai}Mi=1 is a set of two-dimensional images and
Aµ is the mean image of A. By eigen-decomposing G2D, we

obtain the optimal projection axes ΦA = {φi}Mi=1, which are
the eigenvectors of G2D and have the following characteristics:
(i) (φi, φj) = 0, for any i 6= j and (ii) (φi, φj) = 1, for
any i = j, where (·, ·) denotes inner product. In addition, the
ΦA set is ordered so that the first few φi vectors retain most
of the variation available in the entire A set. In the case of
data compression, the first k vectors of ΦA, where k � M ,
represents most of the variation presents in A. We can observe
that by applying 2D-PCA instead of PCA we achieve a much
more compact subspace. Therefore, we adopt the use of 2D-
PCA to create the basis vectors instead of the traditional PCA,
as will be detailed further.

Although 2D-PCA generates a more compact set of basis
vectors than the conventional PCA, the feature extracted from
a two-dimensional image is still a vector, not a matrix. Hence,
the operation of extracting the basis vectors employed by
2D-PCA works systematically only in the row direction. An
alternative denominated Alternative 2D-PCA [13] explores this
idea and, instead of operating in the row direction, extracts
the basis vectors by operating in the column direction. This
approach showed that both column direction 2D-PCA and
row direction 2D-PCA achieved similar performance, even
working on orthogonal directions.

In order to explore within-row and between-row information
of the covariance matrix, extended two-dimensional principal
component analysis (E2D-PCA) [14] was proposed. In E2D-
PCA, it is shown that the covariance matrix of 2D-PCA corre-
sponds to the average of the main diagonal of the covariance
matrix of PCA. Therefore, the covariance matrix achieved by
2D-PCA is a subset of the covariance matrix obtained by PCA.
This subset may have less discriminative information than the
original set, leading to a weaker discriminative set of features.
Instead, E2D-PCA is able to produce more discriminative fea-
tures than 2D-PCA by employing more covariance diagonals
than the matrix covariance of 2D-PCA. Also, it is possible to
directly control the trade-offs between recognition accuracy
and model complexity.

In general, object recognition algorithms make use of gray-
scale images for evaluating its performance. However, in [17]
it is shown that color information plays an important role
in face recognition systems. An extension of 2D-PCA de-
nominated Color-PCA [15] was proposed in order to handle
color information for face recognition systems. In addition, to
explore the properties of 2D-PCA, Color-PCA also includes
features of color images by maintaining RGB information
as a third-order tensor. The higher recognition performance,
compared to conventional 2D-PCA, is justified by the reason
that the skin pixels would occur in close proximity to other
skin pixels and that the skin color features would lie on a better
discriminative subspace, which does not occur in gray-scale
images. The procedure to create the principal components
is similar to the 2D-PCA, except that the covariance matrix
of each image is generated by concatenating the RGB color
layers into a single matrix, instead of using just one gray-scale
layer. In this case, the set of concatenated RGB layers images
ARGB = {ARi ‖AGi ‖ABi }Mi=1 is used in order to create the



following correlation matrices:

CH =
1

M

M∑
i=1

(ARGBi −AµRGB)T (ARGBi −AµRGB), (2)

CV =
1

M

M∑
i=1

(ARGBi −AµRGB)(ARGBi −AµRGB)T , (3)

where CH and CV stand for the correlation matrices when the
images of ARGB are concatenated horizontally and vertically.

2D-PCA and its variants use the 2D image matrices to con-
struct the covariance matrix, grouping these features randomly
by row or column of the input image. Thus, some informative
patterns may be lost. To solve this issue, cross grouping 2D-
PCA (C2D-PCA) [16] is proposed to face recognition. This
technique aims to reduce the redundancy among the row and
the column vectors of the image matrix. C2D-PCA completely
preserves the covariance information of PCA between local
geometric structures in the image matrix which is partially
maintained in 2D-PCA and its variants. To accomplish these
properties, the covariance matrix of C2D-PCA is produced
from the summation of the outer products of the column and
the row vectors of all images, then eigenvalue decomposition
is applied to the covariance matrix in order to obtain the basis
vectors employed to generate the subspaces.

B. Image Set classification Methods

Several solutions to image set matching have been proposed
in recent years. In general terms, these methods can be divided
into two approaches: parametric model methods and non-
parametric sample methods. The parametric model methods
employ some parametric distribution, such as Gaussian, to
describe each image set and then measure the distribution
similarity. The non-parametric methods aim to describe an
image set as a subspace or a manifold. These methods employ
the distance between the manifolds or subspaces in order to
measure the similarity between the image sets.

Discriminant Analysis of Canonical Correlations
(DCC) [18] is an image set classification technique that
attempts to find a subspace which the within-class correlation
of sets is maximized and the between-class correlation is
minimized. DCC uses a linear discriminative function to
maximize canonical correlations of within-class sets and
minimize canonical correlations of between-class sets. In
DCC, the similarity of any two transformed data sets are
defined as the sum of canonical correlations.

ManifoldManifold Distance (MMD) [19] represents each
image set as a manifold. Each manifold consists of a collection
of local linear subspaces, which can preserve large variations,
such as illumination and point of view. The distances between
pair-wise subspaces is integrated in order to create the simi-
larity between the manifolds.

Manifold Discriminant Analysis (MDA) [20] is a manifold
based image set classification technique that maximizes the
distance of manifolds with different class labels and enhances

the local data compactness within each manifold. MDA em-
ploys discriminative learning based on Linear Discriminant
Analysis (LDA) in order to map the multi-class manifolds into
an embedding space.

Convex Hull based Image Set Distance (CHISD) [21] is an
image set classification technique that models each image set
as a convex geometric region in feature space. The similarity
between the convex geometric regions represented by convex
hulls is computed based on the distance of closest point
approach. By using a convex approximation, the method is less
overfitting than the methods based on sample points because
CHISD can produce new samples on the hull. In addition, the
approach can be optimized to deal with outliers.

III. PROPOSED METHOD

In this section, we first describe the steps to generate two
dimensional subspaces by 2D-PCA and its variants. Then,
we introduce the procedure to compute the weights of each
two dimensional subspaces and the similarity based canonical
angles. After that, we introduce the procedure of our object
recognition framework. Finally, we show the computational
advantage of replacing the conventional PCA by 2D-PCA and
variants on gMSM. We conducted complexity analysis of 2D-
PCA [7], A2D-PCA [13], E2D-PCA [14], Color-PCA [15] and
cross grouping 2D-PCA (C2D-PCA) [16]. Figure 1 shows the
difference between MSM and the proposed 2D-gMSM.

(a) (b)

Fig. 1. (a) The concept of MSM, where the subspace dimensions of Pi and Qi

are empirically obtained. (b) The proposed 2D-gMSM, where soft weighting
evaluates the importance of each eigenvector. Therefore, 2D-gMSM employs
all the basis vectors produced by 2D-PCA. Also, the basis vectors produced
by 2D-PCA and its variants are more compact, improving the processing time.

A. Generating Subspaces by 2D-PCA

To solve the image-set problem, we introduce 2D-gMSM,
which is based on gMSM and 2D-PCA and variants. gMSM
exploits the fact that a set of images lies in a cluster, which
can be efficiently represented by a set of orthonormal basis
vectors [2]. This approach is also applied by eigenspace [22];
however, in contrast to eigenspace, gMSM constructs a sub-
space for each different set of images, instead of just one.
Our proposed method makes use of gMSM framework and,
by replacing PCA by 2D-PCA, achieves a more compact and
meaningful subspace. In our method, we represent a set of M
two-dimensional images Y = {Y1, Y2, . . . , YM} as a subspace,
which is generated by extracting the eigenvectors from the
following correlation matrix:



G2D =
1

M

M∑
i=1

(Yi)
T (Yi). (4)

It should be noted that, in 2D-gMSM, the covariance matrix
is not centered, different from the covariance matrix handled
by 2D-PCA. In this work, we investigate the behavior of the
proposed framework by replacing the covariance matrix in
accordance with the 2D-PCA and its variants, creating a 2D-
gMSM version for each 2D-PCA variant.

B. Computing the soft weighs of each Subspace

As mentioned before, the basis vectors generated by 2D-
PCA and its variants represent a set of images in a compact
manner. In gMSM, all the eigenvectors are employed to
represent a subspace. However, each eigenvector has its own
weight, which is computed as follows; let Λ2D = diag(λ)
be the eigenvalues of matrix G2D in descending order, the
design of the soft weights is performed according to these
eigenvalues. Let Ω = diag(w) be a diagonal matrix of soft
weights:

ω = wM (λ) = min

[
λ

λM
, 1

]
, (5)

where wM is the M−th eigenvalue in λ. This soft weighting
evaluates the importance of each eigenvector as a basis in the
subspace by the variance relative to λM . The M first values
of the diagonal matrix Ω will be unity and the remainder will
be proportionally decreasing with the M−th eigenvalue.

C. Similarity-based Canonical Angles

After obtaining a set of basis vectors which best approxi-
mates each subspace to its corresponding set of images and its
weights, we can compute the similarity between the subspaces.
This procedure is achieved by applying canonical angles or
principal angles [4]. As in gMSM, we consider that if the dis-
tance between two subspaces is smaller enough, then we con-
sider these subspaces similar to each other. In practical terms,
let Φ2D = {φ1, φ2, . . . , φM} and Ψ2D = {ψ1, ψ2, . . . , ψM}
span two M−dimensional subspaces and SΦ2D,Ψ2D

= {0 ≤
θ1 ≤ θ2 ≤ . . . ≤ θn ≤ π/2} represents the set of angles
between Φ2D and Ψ2D. A practical approach to determine
SΦ2D,Ψ2D

is by calculating the Λ2D = {λ1, λ2, . . . , λM}
eigenvalue of ΩΦ2D

ΦT2DΨ2DΩΨ2D
. The canonical angles θi =

{cos−1 λ1, cos−1 λ2, . . . , cos−1 λM} are used to compute the
structural similarity between soft weighted Φ2D and Ψ2D

subspaces as follows:

S(Φ2D,Ψ2D)M =
1

M

M∑
i=1

cos2 θi, (6)

the structural similarities between subspaces are more robust
to noise, such as illumination variations and point-of-view.

D. Image-set matching by using 2D-gMSM

Let us assume that C sets of training images are given
by {A1, A2, . . . , AC}, where Ai is a set containing M two-
dimensional images. Let us assume that each Ai set belongs
to one of the C object classes. Then, we assume that there
is a linear transformation that represents each Ai set in terms
of its variance. This new representation, {Φ1,Φ2, . . . ,ΦC},
provides a more compact manner to represent each Ai set and
its computational matching cost is therefore, greatly reduced.
Each Φi basis vectors spans a reference subspace Pi, where its
weights are computed based on its eigenvalues according to
Eq. (5). Finally, for a given set of two-dimensional test images
Y = {Y1, Y2, . . . , YM}, the task is to compute a subspace
QY that represents Y in terms of its variance and predicts
its corresponding image set based on the nearest Pi reference
subspace, according to Eq. (6).

E. Computational Advantage

The main difference of 2D-gMSM from traditional gMSM
is that 2D-gMSM does not require transforming image matri-
ces into vectors. Thus, it reduces the computational complexity
of construction of the subspaces and reduces the computation
time of the matching. All these make the proposed algorithm
superior to gMSM, in terms of computational time. In addition,
the basis vectors produced by each 2D-PCA variant specifies
the time required and the computational complexity of this
algorithm. In 2D-PCA and its variants approach, the time
requirements and the computational complexity in all these
methods are close to each other. However, excepting from
Color-PCA and E2D-PCA, all are smaller than PCA.

The components for constructing gMSM and 2D-gMSM
are similar. In order to clarify, we adopt the computational
advantage of 2D-gMSM over gMSM, since calculating the
covariance matrix of 2D-PCA, A2D-PCA, and C2D-PCA,
hold the same computational complexity [16]. However, Color-
PCA requires more computational resource, since Color-PCA
works on the RGB channels.

In order to show the computational advantage of 2D-gMSM
over gMSM, let us follow the steps to extract both gMSM
and 2D-gMSM basis vectors from the set of M images
Y = {Y1, Y2, . . . , YM}. In gMSM, each yi image is previously
reshaped to d−dimensional vectors, where d = h× w. Then,
let us denote GgMSM and G2D−gMSM as covariance matrices
employed by gMSM and 2D-gMSM respectively.

In this scenario, it is required 2(d × d ×M) flops (taking
into account float point multiplications and additions) to com-
pute both GgMSM and G2D−gMSM covariance matrices (see
Eq. (4)). From the above, we obtain that the size of GgMSM

and G2D−gMSM are respectively d × d and h × h. The next
step is the eigen-decomposition of GgMSM and G2D−gMSM .
The computational complexity of eigen-decomposing an n×n
matrix is O(n3). Therefore, extracting the basis vectors from
G2D−gMSM is computationally more efficient than extracting
the basis vectors from GgMSM , since G2D−gMSM is much
smaller than GgMSM , as well as the matching times.



The relationship between 2D-PCA and PCA is that the
scatter matrix of 2D-PCA is constructed by sum of all scatter
matrices of different column indices in the main diagonal of
PCA [14]. Therefore, using 2D-PCA instead of PCA may lead
to loss of discriminative information that could improve the
accuracy of 2D-gMSM. This problem is addressed by E2D-
PCA, where a radius of r diagonals around the main diagonal
of PCA is employed to construct the E2D-PCA scatter matrix.
The parameter r connects PCA and 2D-PCA, controlling
the trade-offs between the basis vectors dimension and the
recognition accuracy. Thus, E2D-PCA has a computational
complexity ranging between the complexity of 2D-PCA and
the complexity of conventional PCA.

IV. EXPERIMENTAL RESULTS

We conducted image set matching experiments on six
datasets including the ALOI [8], RGB-D [9] for the ob-
ject recognition task, Honda/UCSD [10], YouTube Celebrities
(YTC) [11] and PubFig83 [12] for the face recognition. We
compared the computational time and the classification rate of
the proposed method with DCC [18], MMD [19], MDA [20]
and CHISD [21] methods on the different datasets. For the
test stage, we computed the processing time of classifying one
image set with all training image sets. The performance we
report is measured on a Unix-like PC equipped with a Core
i7 2.2GHz quad core with 8 GB RAM under Matlab. For the
experiments, we resized all the images to 40× 40 pixels and,
except from Color-gMSM, which can handle RGB data [15],
all the other methods employed gray-scale images.

For the object recognition task, we employed ALOI dataset.
ALOI is a large image database of general objects where
the illumination angle, illumination color and the viewing
angle, were systematically varied in order to produce about
110 images for each object. In this experiment, we used the
first 500 object instances of the database. All images were
segmented from the background and we classify an input set
of images to one of the 500 objects available in a 10−fold
cross validation scheme. We also employed RGB-D dataset,
which consists of color and depth videos sequences of 300
objects containing 51 categories. The video sequences were
taken from three different viewpoints. In our experiments, we
subsample each sequence by taking every fifth frame, resulting
in 41, 877 color and depth images. The objects in the dataset
are already segmented from the background. We classify an
input set of images in a 10−fold cross validation scheme.

In Honda/UCSD dataset, we consider their first subset,
which consists of 59 videos of 20 subjects. In each video,
subject moves his face in an arbitrary sequence of 2-D and 3-D
rotations while changing facial expression and speed, illumina-
tion conditions also vary significantly. Each video consists of
about 300-500 frames and each subject has at least two videos.
The face images were cropped and we classify an input set
of images in a 10−fold cross validation scheme by randomly
selecting one sequence for each subject for training and using
the rest for testing, as in [20]. For face recognition task,
we also employed YTC dataset, which contains 1910 video

clips of 47 celebrities, mostly actors and politicians, collected
from YouTube under unconstrained conditions. Each video
clip contains frames varying from 7 to 400. There are large
variations of pose, illumination, and expression on face videos.
In addition, the quality of face videos is very poor because
most videos have high compression rate. This database is more
challenging comparing to Honda/UCSD as the videos exhibit
very large variations in face pose, illumination, expression, and
other conditions. The face images were evaluated in a 10−fold
cross validation scheme.

PubFig83 dataset contains 8300 cropped face images of
100×100 pixels, with 100 images of each of 83 subjects. There
are large variations of pose, illumination, expression on face
images because these images were captured in unconstrained
environments from the Google images and FlickR. We also
employ a 10−fold cross validation scheme.

Table I lists the performances of 2D-gMSM (and variants)
and gMSM in terms of the processing times (in seconds) and
classification rate (%). We can observe that the classification
time of 2D-gMSM (and most of its variants) are about 4 times
faster than the learning time and matching time of gMSM,
revealing that the computational cost to obtain the subspaces
from the covariance matrix employed by 2D-gMSM (and
variants) is more efficient than the covariance matrix employed
by gMSM. The scatter matrix of 2D-gMSM is formulated
by sum of all scatter matrices of different column indices
in the main diagonal of PCA. Hence, the processing times
of 2D-gMSM and A2D-gMSM are very fast, comparing to
gMSM because the number of features employed by these
methods are less than the number of features employed by
gMSM. However, replacing PCA by 2D-PCA and its variants,
some discriminative features may be lost according to the
compactness type of each method, decreasing its classification
rate.

We can note that Color-gMSM achieved the highest recog-
nition rate compared to the other methods. This is an expected
result, since Color-gMSM can efficiently handle color informa-
tion, which more discriminant features are available. Hence,
the processing time of Color-gMSM is higher compared to
gMSM and E2D-gMSM, due to its larger covariance matrix.
E2D-gMSM has shown an interesting result, since its recog-
nition rate is comparable to gMSM and its processing time
is more efficient. E2D-gMSM has this behavior, due to the
dynamic construction of its covariance matrix, which its size
varies from the size of 2D-PCA and PCA. In our experiments,
the parameter r (the trade-offs between the subspace dimen-
sion and the classification rate) is set by experiments.

MDA and CHISD exhibited the higher classification rates
(except from Color-gMSM) on YTC datasets. This result
is due to the fact that MDA learns a linear discriminant
function, maximizing the between-class manifolds separability,
and achieving high classification rates on image face datasets.
CHISD reduces the influence of outliers by applying robust
methods to remove samples that do not fit the model. On
the other hand, gMSM and the proposed methods do not
apply robust techniques, only making use of the eigenvalues



TABLE I
PROCESSING TIME (SECONDS) OF DIFFERENT IMAGE SET CLASSIFICATION METHODS AND THE AVERAGE CLASSIFICATION RATES.

Dataset ALOI RGB-D Honda/UCSD YTC PubFig83

Method Train Test Class. Rate Train Test Class. Rate Train Test Class. Rate Train Test Class. Rate Train Test Class. Rate

DCC [18] 93.9 2.3 90.1 ± 3.7 102.9 2.7 89.7 ± 2.4 58.1 1.6 92.8 ± 2.3 91.9 5.1 65.8 ± 4.5 24.5 1.6 45.5 ± 1.5
MMD [19] – 3.9 85.8 ± 3.9 – 4.1 88.4 ± 2.6 – 4.3 92.6 ± 2.1 – 8.3 67.7 ± 3.8 – 2.9 46.3 ± 1.5
MDA [20] 117.1 4.1 90.2 ± 3.8 132.8 5.3 89.7 ± 2.5 83.9 2.9 94.5 ± 3.1 145.2 10.2 68.1 ± 4.3 67.1 2.5 48.6 ± 1.6
CHISD [21] – 7.8 79.1 ± 4.2 – 10.4 85.2 ± 2.1 – 12.5 93.2 ± 2,1 – 27.2 67.4 ± 4.7 – 11.9 64.8 ± 2.1
gMSM [5] – 3.5 91.2 ± 2.5 – 3.7 91.4 ± 1.9 – 5.6 94.1 ± 3.4 – 7.2 67.1 ± 4.8 – 5.3 64.7 ± 1.7
2D-gMSM – 0.9 86.6 ± 3.1 – 0.9 87.8 ± 2.1 – 0.9 89.7 ± 4.1 – 1.6 62.8 ± 5.1 – 0.9 60.4 ± 3.5
A2D-gMSM – 0.9 86.5 ± 3.1 – 0.9 87.6 ± 2.3 – 0.9 88.9 ± 4.3 – 1.6 62.4 ± 4.3 – 0.9 60.2 ± 3.6
E2D-gMSM – 1.6 91.2 ± 2.9 – 1.1 91.3 ± 2.2 – 1.3 93.9 ± 3.7 – 2.9 66.8 ± 4.9 – 1.3 64.5 ± 1.9
Color-gMSM – 2.1 91.4 ± 2.7 – 1.9 91.7 ± 1.7 – 1.9 94.3 ± 2.1 – 4.0 67.3 ± 3.9 – 1.6 65.1 ± 1.5
C2D-gMSM – 1.1 87.7 ± 3.4 – 1.1 88.1 ± 2.1 – 1.3 90.1 ± 3.9 – 2.1 63.3 ± 4.9 – 1.3 62.7 ± 2.9

(variance) to determine the importance of each eigenvector.
In addition, gMSM and E2D-gMSM achieved reasonably
competitive recognition rate on Honda/UCSD and Pub-Fig83
datasets. These methods are, therefore, robust enough to han-
dle high variations on illumination conditions, camera angle
and unconstrained backgrounds, inherent in such datasets.

It should be noted that many of the existing methods, as well
as gMSM and the proposed methods, do not require training.
Our proposed methods do not perform training and can adapt
to newly added and previously unseen training data (e.g., when
a new image set is included). However, one major limitation
of our methods is that all the computation is done at run-time
and comparatively more memory storage is required.

V. CONCLUSIONS

A novel object recognition framework has been proposed for
sets of images matching based on gMSM, 2D-PCA and vari-
ants. Most of the 2D-MSM variants are computational more ef-
ficient than the traditional method and the implementation are
straightforward. The proposed E2D-gMSM and C2D-gMSM
algorithms demonstrated an impressive processing time on
all the evaluated databases and recognition rate equivalent to
the traditional gMSM. Moreover, Color-gMSM exhibited the
highest recognition rate on the same databases. We have shown
that our proposed algorithms are theoretically and practically
attractive. Our new approach speeds up the sets of images
matching by creating a more compact representation from
these sets due to 2D-PCA and variants inherent characteristics.
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