
Bottlenecks Identification in Software Development
Process: A Quali-Quantitative Approach

Sildenir A. Ribeiro1,2 Eber A. Schmitz2 Antônio Juarez S. M. de Alencar2 Mônica F. da Silva2
1Coordination of Industrial Automation

Federal Center of Technological Education of Rio

de Janeiro (CEFET/RJ)

Rio de Janeiro, Brazil

sildenir.ribeiro@cefet-rj.br

2Tércio Pacitti Institute of Research and

Computer Applications

Federal University of Rio de Janeiro (UFRJ)

Rio de Janeiro, Brazil

{eber, ajuarez, monica}@nce.ufrj.br

Productivity. K.6.3 Software Management (D.2.9):

Software development, Software process; H. Information

Systems (H.1): H.1.1 Systems and Information Theory

(E.4): Human factors.

INTRODUCTION

This work began from a research opportunity identified in a

review of the literature on the application of the Theory of

Constraints (TOC) in the Software Development Process

(SDP), presented by [21]. The secondary study of [21],

presents several gaps in the application of TOC in the SDP.

One of them is the identification and treatment of

productive bottlenecks in the scope of software

construction.

An important factor that encouraged this research was the

quali-quantitative approach imposed by TOC during the

investigation process to detect and treat bottlenecks in

SDP.

Why TOC?

The Theory of Constraints (TOC) is a methodology widely

applied in process improvement of manufacturing

processes [11, 20, 23, 24]. According to [6, 7, 17], the TOC

can be described as a philosophy of continuous

improvement, which has evolved and expanded its

methodological basis over time. TOC has been the subject

of a substantial amount of research involving its

application to the manufacturing process. TOC

management philosophy incorporates a practical aspect to

decision-making within the production environment, based

on the principle that any limiting factor of a system output

points to a system constraint.

TOC states that every system has at least one constraint [6,

7, 9]. A constraint is any value that can prevent a system

from achieving its goal [9]. According to [6, 7], a

constraint can be external (not physical) or internal

(physical). The external constraints are usually associated

with circumstantial problems, such as: (1) market demand:

production over market capacity or production below

market capacity; and (2) a corporate procedure: in this

case, a decision or a procedure that limits the gain. The

internal constraints are usually physical and are associated

with the resources. According to [6, 7] the external

constraints are of three types: (1) equipment: this is related

ABSTRACT

This paper presents the quali-quantitative results of a study

on the identification of bottlenecks in the software

development process. The research was developed in an

environment learning of Software Engineering and had the

collaboration of students of the Department of Computer

Science (DCC) of the Federal University of Rio de Janeiro

(UFRJ). The main objective of the research is to verify the

existence of productive bottlenecks in Software

Development Process (SDP), typify them and if possible to

promote treatments to solve the impacts in the process and

in the software product. For this, three experimental rounds

were carried out and three different domains were applied.

Each round had deferential teams working in the same

domain. The experiments also involved the Unified Process

(UP) to guiding the SDP and the Theory of Constraints

(TOC) to identify and treat the restrictive elements found in

the productive process. As results, the work presents a set

of qualitative constraints subdivided into two groups: (1)

Behavioral Constraints (BC), and (2) Technical Constraints

(TC). The identification of these qualitative constraints

allowed quantitative bottlenecks to be detected. The

research also showed that bottlenecks are associated with

certain tasks performed in the software development

environment within a given domain. In general, these tasks

are consuming resources, such as effort, time and human

resources. This fact leads to the software product to a low

quality due to the lack of completeness and correctness of

the artifacts delivered to the end of the productive process.

Author Keywords

Software development process, Theory of constraints,

Bottlenecks identification, Quali-Quantitative Analysis.

ACM Classification Keyword

D. Software: D.2 Software Engineering: D.2.8 Metrics:
Software Science; D.2.9 Management (K.6.3, K.6.4):

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. IHC'17, Proceedings of the
16th Brazilian symposium on human factors in computing systems.
October 23-27, 2017, Joinville, SC, Brazil. Copyright 2017 SBC. ISBN
978-85-7669-405-2 (online).

168

to the usability and productive capacity of the equipment;

(2) people: involves the lack of qualified people, the

productive capacity of the people and behavioral aspects;

and (3) policy: the adoption of written policies, such as:

laws, standards and regulations, can be a limiting factor for

the productive system.

These concepts accredit TOC as a powerful tool to identify

and treat restrictive elements, especially the qualitative

problems of the Software Development Process (SDP),

mainly internal constraints (type 2), that involves peoples

by: (1) lack of technical qualification; (2) productive

capacity; and (3) behavioral aspects.

Unified Process (UP) as SDP

The software development process, as well as any

manufactured product, requires the same or even more

insightful demands during its construction cycle. As any

manufacturing process, SDP is influenced by internal and

external variables. Furthermore, the characteristics of the

development teams and ethnological issues have direct

influence on the development process, making the

development environment complex and highly dynamic.

TOC have as fundamental principle the idea that every

process can be continuously improved [6, 7, 11]. For this,

TOC requires that the process is mature, configurable and

applicable. We promote some modifications in the UP to

align with the interests and objectives of this research and

we denominated of UP-Like.

The research methodology criteria used and the working

methods are supported by: (1) studies in the literature about

the use of UP in software development projects and (2)

TOC concepts for bottleneck identification such as [6, 19,

21].

Human Factors

Differently of the processes performed in the

manufacturing industry, where most of the production

process is executed by machines, the SPD require of the

people to execute it. This implies that human factors

technical and behavioral must be considered, once they

have a direct influence on software production.

RELATED WORK

Human and ethnographic factors are discussed in software

engineering for decades. The qualitative aspects around

software development are a broad front of research and

many papers have addressed the theme in an attempt to

highlight phenomena that can reduce impacts on the

productive process of software.

In this work, a brief literature review was conducted to

search for primary studies that have investigated quali-

quantitatively the SPD. The following topics present some

of these works.

 Clarke & O’Connor [4]: carried out a study that made a

substantial body of related research into an initial

reference framework of the situational factors affecting

the software development process. The research includes:

(1) the nature of the applications under development; (2)

team size; (3) volatility requirements; and (4) personnel

experience.

 Rainer & Hall [18]: explored a set of 26 factors that

potentially affect software process improvement (SPI).

The study made a qualitative and quantitative analysis of

case studies, comparing results collected in a case study

with the results of a previously conducted survey study.

The work is outside the search period (2010-2017), but

was selected due the strong correlation with this study.

 Ribeiro et al. [21]: conducted a research involving

students of software engineering according to [3] where

behavioral aspects of software development teams were

observed. The work evidenced a new phenomenon that

was called of “deadline syndrome”.

 Lee & Xia [12]: performed an analytic study on the agile

software development process by empirically examining

the relationships among two dimensions (1) software

development agility: software team response

extensiveness, software team response efficiency, team

autonomy, team diversity; (2) aspects of software

development performance: on-time completion, on-

budget completion, and software functionality.

Other works also contributed to form knowledge about this

subject, as: Ribeiro et al.[22] that presented a short paper to

report quasi-experiment in academic environment to detect

bottlenecks SPD; Adolph et al. [1] with an empirical

research that grounded a theory to study the experience

of software development; Buse & Zimmermann [2] with

the study on Information needs for software

development analytics; Gousios et al. [8] that performed

An exploratory study of the pull-based1 software

development model; McLeod & MacDonell [13], that

presented a survey on factors that affect software

systems development project outcomes and Nilsson et

al. [15] that applied a methodological description to

Assessing the effects of introducing a new SDP in the

software industry.

EXPERIMETAL DESIGN

The experiment was conducted in vivo and in a controlled

environment, as recommended by [25]. We create a

specific methodology for execution and conduction of the

experiment. and a model of execution of the process

according to the UP-Like phases and according to the

experiment template.

Our purpose is to present a model of the experiment, as

defined in [10, 14, 25], following the scientific method,

described in [5]. By specific needs of this work, we adjust

the scientific method proposed by [5] according to the five

steps of the Theory of Constraints (TOC) and the phases of

the Unified Process (UP-Like). Thereby, was possible to

1Pull-based development is an emerging paradigm for distributed

software development (Gousios et al. [8].

169

http://www.sciencedirect.com/science/article/pii/S0950584911002369
http://www.sciencedirect.com/science/article/pii/S0950584911002369

establish a cyclical model that can cover the entire software

development process. Figure 1 show the scientific method.

Observation:

1. Controlled

2. Systematic

3. In Vivo

Analysis:

Implications

Conclusions and

Suggestions

Hypothesis:

1. Null

2.Testables

3. Falsifiables

Facts:

1. Verifiable

2. Dispensables

Theoretically Base

(Questions and Relation

between facts, hypothesis and

constraints)

Experimentation:

1.Analysis;

2.Planning

3.Execution

4.New Observations

5.Logical Analysis

New Facts

Indution: (Results

corroborate with the

Theory?)

Recycle Hypothesis
No Yes

Experiment Method Outline

Figure 1. Scientific method applied (adapted of [5])

Methodology and Process

The methodological criteria used and the working methods

(process) are supported by: (1) studies in the literature

about the use of UP in software development projects and

(2) TOC concepts for bottleneck identification such as [6,

7, 16, 21]. Figure 2 illustrates the experimental flow a

sequentially oriented by nine steps, following strictly the

TOC principles and the structure of Unified Process (UP).

1. Problem

Scope

Presentation
6. Delivery

7. Evaluation

of the

artifacts

4. Problem

Description

(UP)

3. Problem

Description

2. Evaluate

CSF

 Problem

Domain

Presentation

Artifacts

5. Construction
(requirements,

modeling, code...)

12. Final

Delivery11.Corrections /

changes

10. Explanatory

classes /

leveling and

ajsutes

9. General

Meeting (with all

teams)

8. Feedback on

problems

encountered

Treatment

13. Final evaluate

Figure 2. Experiment execution flow

Research Organization: Criteria Adopted

The research was organized with the following guidelines:

1. Random division of the class in working groups /

development teams;

2. Initial team assessment using questionnaires to

identify Critical Success Factors (CSF). Repeated later at

different times;

3. Presentation to the teams of the product specification

for the software to be developed;

4. Definition of resources to be used by all teams:

hardware, software and laboratories with IT infrastructure;

5. Definition of the methodology applied in the

experiment and the experimental process.

6. Creation of the experiment logbook to record the daily

observations on the execution of the experiment;

7. Presentation of the project schedule: setting out

delivery dates for the artifacts produced in each phase of

the experiment;

8. Definition of the artifacts to be delivered: (1)

Documentation; (2) Database; (3) Logical Architectural;

(4) Codes (includes screens); And (5) tests. The artifacts

were grouped by type of tasks and oriented by the phases

of the UP.

9. Team evaluation: during the development stages

according to the delivery of the artifacts.

10. Elaboration of criteria to align the artifacts delivered

by each team in each stage.

11. Final evaluation: realized after the final delivery of the

product, that consists of software product installed tested

and approved.

12. Homologation of the product in a production

environment.

Format and Minimum Requirements of the Artifacts

In order to format the productive results to be delivered by

development teams, the following criteria were adopted:

 Deliveries must be made in accordance with the phases

of the UP-Like;

 Deliveries must be made on the dates foreseen in the

schedule / schedule of the experiment;

 The minimum requirements of deliverables comprise of

a set of tasks that must be performed for each artifact

constructed;

 Deliveries must meet pre-defined minimum

requirements and be developed following the UP-like

phases;

 The defined artifacts are: Architecture, Database,

Coding, Documentation and Testing;

 The set of tasks to be performed is fixed and previously

defined;

 Tasks can be processed and reprocessed by

development teams until concluded (complete and

correct);

 Tasks can be processed and reprocessed by different

team members in different phases of UP-like;

 Tasks are scheduled according to the type (artifacts)

and according to UP-Like phases;

 At each stage of the UP-Like, new tasks are inserted for

the completeness of the artifacts to be delivered.

Measurement Criteria

To create a standardized assessment that could be applied

commonly to each artifact produced by each development

team, the following criteria were implemented.

1. Total or complete delivery: All tasks were produced

and delivered. In this case, weight 1 is assigned.

2. Partial delivery: the quantity delivered is between (>

50% <100%) of the tasks to be carried out in the

phase. In this case, weight 0.5 is assigned.

3. Undelivered artifact: the tasks were not produced or a

quantity less than 50% was delivered. In this case the

assigned weight is 0.

Software Product Acceptance Criteria

170

The software produced in the three experiments was

evaluated through: (1) resources used; (2) environment and

team of development; and (3) process and the generated

software product.

ISO/IEC 25010:2011 and ISO/IEC 25020-24:2010

recommend a "ranking" system with scores that meet the

following criteria: Satisfactory {3-Execellent, 2-Good, 1-

Regular} and Unsatisfactory {0-Bad, 0-Undeliverable /

Nonexistent}.

Acceptance of the artifacts at each stage of UP-Like

(partial delivered) and of the final product was followed by

the guidance of ISO/IEC 8402:2006, through the following

parameters: functionality, reliability and usability.

For each delivery a weighted average is calculated

according to the weights given in the "Measurement

Criteria" session. The artifact with mean (μ ≥ 75%) is

accepted and considered as delivered. The same criterion is

adopted for evaluation and acceptance of the final product

(software completed and delivered).

Artifacts and Tasks

Specifically for this work we adopt the following

definitions for the terms artifacts and tasks: (1) Artifacts:

parts of the product to be developed. It consists of tasks of

the same group or type. The artifacts defined are:

Architecture, Codes, Database, Documentation and Test.

and (2) Tasks: Set of 26 items (jobs) to be developed,

divided into categories/types that make up the artifacts.

The complete list of tasks can be found in (Ribeiro, tese

2017).

Scheduling of Tasks

The production process and the scheduling of tasks in the

production environment was performed by a model based

on the Dynamic Job Shop Problem (DJSP) was developed

with the following characteristics.

 A shop S is composed of a set L of production lines;

 A production line L is composed of Mi set of

machines;

 Each Mi machine is represented by an individual i;

 A task j is denoted by ji n;

 A set of artifacts is denoted Aj

 An operation Ot is denoted by M = {Mi, Aj}, where Mi

are machines at production line and Aj are artifacts for

each task jn in a time t;

 Each shop S  LM components processing tasks;

 D = {A1, A2, ..., An} are the sets of artifacts produced

and delivered at a time T.

 Each machine must produce and deliver a DA set of

artifacts at the end of each UP-Like phase.

 Wj is the set of predecessor tasks and must be scaled

first;

 A task j can be rescheduled until it is completed or

until it reaches the expected quality, regardless of the

UP-Like phase.

A simple case of the Dynamic Job Shop (DJS) modeled for

a production line (L) running with 2 machines L={M1, M2},

processing 2 tasks j, staggered at a given time T in a phase

of the UP-Like, can be represented by Figure 3.

Simplest case DJS environment: (1) L = Mi Aj; (2) W= {j1,

j2}; (3) 𝑇 = 𝑇𝑀1
+ 𝑇𝑀2

; 𝑎𝑛𝑑 (4) 𝑂𝑡 = 𝑇 + 𝐿

ME

M1

M2

Begin End

(T)

(M) DJS: Simplest Case

TM1

TM2

W1

W2

A1

A2

Figure 3. Simplest case (Dynamic Job Shop model)

Constraints Definition

There are two distinct sets of problems in SDP: (1)

Qualitative constraints: Directly associated with problems

who involve an individual or the development team. (2)

Quantitative constraints (productive bottlenecks): problems

that have impacted directly on the final product. Usually

caused by a qualitative constraint.

Qualitative constraints are identified and handled at

runtime. Quantitative constraints (bottlenecks) are

problems detected after the data quantitative analysis, i.e,

after the execution. This implies rescheduling the

associated tasks in order to achieve the required

completeness and new resources are used: time, peoples

and computational tools.

Constraints Identification

For qualitative constraints we apply the following terms:

 Monitoring: continuous observation of development

teams;

 Follow up: current status and project evolution;

 Meeting: can be of two types: (1) with the development

teams; and (2) punctual meetings with a specific team

member. Usually depends of observation on the

recurring problem.

 Subjective analysis: partial analysis of the data (tasks

produced) at runtime, such as: identification of a poorly

constructed model; a bad code or a database with

structural problems.

For quantitative constraints we apply the following

variables:

 Time: calculation of time consumed by task/artifact.

Time is measured by task, by set of artifact and by

participant (individual) and by the team.

 Quality: calculation of the weighted average on the

quality of the artifact delivered, according to

"Measurement Criteria".

171

 Survey: The survey is an interview where participants

point out the level of difficulty to complete an activity.

Where: 0 = no difficulty; 1 = little difficulty; 2 =

moderate difficulty; And 3 = too much difficulty. For

the survey, a weighted average is also calculated where

the weights are the own scores assigned by the

participants in the tasks.

Treatment of qualitative constraints

The quantitative constraints were treated from the

following items.

1. Lectures: The expository classes are preventive

actions, i.é, are applied for leveling of knowledge and

before the execution of a task or stage of development; In

industry, expository classes can be replaced by training or

instruction given by more qualified and experienced

professionals.

2. On-site visit: the on-site visit is made to a team at

runtime. The on-site visit is done both to identify and

map a problem/constraint, and to treat it;

3. Alignment meeting: This is a meeting with the teams

where the problem was identified. The goal is always to

address the constraint and not point or accuse the source

of the problem;

4. Expositive Feedback: is an exposition of the

problem together with a guideline for a possible

treatment and should be presented to all teams. The idea

is to avoid that the same problem happens in the other

teams, anticipating the treatment proactively;

5. Written feedback: is a written record that must be

submitted to the team that shows a constraint.

Application of TOC

The logical foundation of TOC is based on the five steps

that determine the concentration of the effort to improve

the productive capacity of environment of development.

TPC is a production scheduling method that has been

developed to support this rationale and is intended to

"protect" a Capacity Constrained Resource (CCR). The

identification and treatment of the qualitative constraints

proposed in this work goes through this arrangement to

improve the productive capacity of the team member,

especially when applied to TOC steps 1 and 4. Thus, the

treatment is made with the pointing (identification) of the

problems (constraints) and strictly follow the 5 steps of

TOC.

1. Identification and evaluation of the constraint;

2. Explore the constraint to transform/modify this

"weak link" of the process;

3. Subordinate other resources to the constraint, such as

relocating the task to other team members;

4. Elevate the constraint, which in this case implies

alternatives to reduce the impact of the constraint on the

process and the product;

5. Avoid inertia by re-evaluating the process, the teams,

the constraints found, to minimize the risk of arising new

constraints.

QUALITATIVE ANALYSES

The qualitative evaluation applied in this research obeys

the validity criteria with the use of neutrality, observation,

long-lasting/on-site engagement, and especially with the

generalizability and legitimacy of empirical study, as

suggests Newman & Benz [14].

The search for evidence of bottlenecks in the software

development environment started from the ethnographic

observations noted in the register of the experiment.

Experimental Data

Table 1 presents the independent variables used in each

experimental round (Exp 1. Exp 2 and Exp 3).

Table 1. Independent variables and values of experiments

The total of groups in parentheses of Id 5 of table 5,

represents the groups that concluded the experiment.

For each experiment a specific domain was used.

1. Domain: Rent a car control system (Exp 1);

2. Domain: Academic control system (Exp 2);

3. Domain: Ticket sales control system (Exp 3).

Qualitative Constraints Identified in PDS

The constraints found were separated into two groups: (1)

behavioral restrictions; and (2) technical constraints.

Behavioral Constraints (BC)

The constraints in Table 2 represent the BC qualitative

found in the shops of Experiments 1, 2 and 3.

Behavioral Constraints

Id Constrains Exp 1 Exp 2 Exp 3

BC1 Internal communication Yes Yes No

BC2
Internal Relationship

(Conflicts)
Yes Yes Yes

Id
Independent

Variables

Values

Exp 1 Exp 2 Exp 3

1
Period of

Execution

08/12/2014

to

12/04/2014

03/17/2015

to

07/16/2015

10/13/2015

to

03/17/2016

2
Duration

(weeks)
17 18 19

3
Students

Total
35 32 18

4

Total

students

(other areas)

03 02 0

5 Groups Total 10 (9) 9 (8) 6 (4)

6
Lectures

Number
10 09 06

7

Practical

Classes

Number

17 18 19

8
Number of

on-site visit
4 4 4

9

Total

expositive

feedback

4 4 4

10

Write

feedback

total

4 p/LP 4 p/LP 4 p/LP

172

BC3
Pro-activity and

Passivity
Yes Yes Yes

BC4
Commitment to the

Project
Yes Yes Yes

BC5

Focus Deviations:

External impact of other

curricular activities

Yes No No

Table 2. Behavioral constraints

Treatment of Behavioral Constraints (BC)

The treatments applied in the BC will be presented in the

following topics. The topics will also present the groups

(teams) and phase of the UP-Like in which the constraint

occurred.

 BC1: constraint evidenced in the groups (G3 and G9)

of Exp 1 and group (G2) of Exp 2. The constraint

occurred in the following phases of the UP-Like: Exp 1

(3rd phase); Exp 2 (3rd and 4th phase).

Treatment: (1) guidance: about the importance of

establishing a solid channels of communication and

follow-up these channels; (2) billing: rigidity in the

evaluation of results; (3) alert: about the evaluation

(score) of the software engineering discipline.

 BC2: constraint evidenced in the group (G3) of Exp 1,

(G1) of Exp 2 and group (G2) of Exp 3. The constraint

occurred in the following phases of the UP-Like: Exp 1

(3rd phase); Exp 2 (2nd, 3rd and 4th phase) and Exp 3 (3rd

phase).

Treatment: in the specific case of this study, the

problem was mediated by the interlocutor, with the

following actions: (1) private conversation with the

team; (2) individualized conversation with those

involved; (3) guidance and motivation regarding

conflict resolution; (4) re-presentation of the

importance of the project and the common objective of

the team; and (5) threat of penalties: all group would be

penalized for not complying with the project stages.

 BC3: constraint evidenced in the groups (G2, G3, G7

and G8) of Exp 1, group (G4, G8 and G9) of Exp 2 and

group (G1 and G4) of Exp 3. In the three cases (Exp 1,

Exp 2 and Exp 3). The constraint was observed after the

2nd phase of process.

Treatment: (1) redistribution equitable of tasks; (2)

motivation to the passive team members; and (3) billing

on passives about the work plan.

BC3 was identified with a constraint because the team

members pro-active assume tasks beyond their

productive capacity, and this has a direct impact on

development.

 BC4: constraint evidenced in the group (G3) of Exp 1,

group (G1) of Exp 2 and group (G2) of Exp 3. The

constraint was observed after the 2nd phase of process

UP-Like.

Treatment: (1) continuous billing of the groups; and

(2) instruction on the importance of the work.

 BC5: constraint evidenced in all groups of Exp 1,

Mainly (G3), and group (G2) of Exp 2. The constraint

occurred in 2nd e 3rd phases of both experiments (Exp 1

and Exp 2).

Treatment: (1) adjustment of the schedule of deliveries

according to the academic calendar; and (2)

postponement: the delivery was postponed in one week.
Technical Constraints (TC)

Table 3 presents the TC (qualitative) found in the shops of

Experiments 1, 2 and 3.

Technical Constraints

Id Constraints Exp 1 Exp 2 Exp 3

TC1
Maturity on the

domain
Yes Yes Yes

TC2
System

documentation
Yes Yes Yes

TC3

UML language:

Knowledge and

correct notational use

Yes Yes Yes

TC4

Tools used:

Knowledge and

ability

Yes Yes Yes

TC5 Unified Process Yes Yes Yes

TC6
Architectural model

(MVC)
Yes Yes Yes

TC7 Test strategies Yes Yes Yes

Table 3. Technical constraints

Treatment of Technical Constraints (TC)

The treatments applied in the TC will be presented in the

following topics. The structure adopted presents the same

standard shown in the previous section.

 TC1: constraint evidenced in all groups of Exp 1,

except (G8) and (G2), in the group (G4) in Exp 2 and

group (G2) in the Exp 3. In the three experiments, the

constraints occurred in the phases 1 and 2 of UP-Like.

Treatment: elaboration of a pro-analysis and a pro-

specification formal and direct of the requirements,

containing: (1) identification of the main functionalities

and classes of the system; (2) clarification of generic

doubts (for all groups – classroom lecture); and (3)

clarification of specific doubts (for each group - on-site

visit).

 TC2: constraint evidenced in all groups of the three

experiments. The constraint occurred in the phases 1, 2

and 3 of all experiments.

Treatment: (1) preparation of a road map; and (2)

lectures explaining how to build the documentation.

 TC3: constraint evidenced in all groups of Exp 1 and

Exp 2, except (G8) from Exp 1 and (G4) from Exp 2.

In the Exp 3 the groups (G1) and (G2). The constraint

was observed in the 1st and 2nd phases of the Exp 1and

Exp 2 and 1st, 2nd and 3rd phases of Exp 3.

 Treatment: (1) application of five theoretical lectures

on UML involving: UML elements and the diagrams

defined in the project to compose the software plant.;

and (2) a case study of a similar domain was shown to

173

increase the capability and ability to abstraction of the

requirements.

 TC4: constraint evidenced in all groups of Exp 1, all

groups of Exp 2, except group (G4) and group (G2) in

the Exp 3. The constraint was observed in the 1st, 2nd

and 3rd phases in all experiments (Exp 1, Exp 2 and Exp

3).

Treatment: (1) Attempt to level the groups with

specific instructions on each front of work; (2)

incentive to explore the individual abilities of each team

member; and (3) Guidance on internal redistributing of

tasks according to individual skills and knowledge.

 TC5: constraint evidenced in the all groups of all

experiments. The constraint was observed in the 1st and

2nd phases in all experiments.

Treatment: (1) transmission of knowledge through

lectures and practices; and (2) follow-up during on-site

visits.

 TC6: constraint evidenced in all groups of Exp 1,

except (G2, G8, and G7); and all groups of Exp 2,

except G4 and the group (G1) of Exp 3. The constraint

was observed in the 2nd, 3rd and 4th phases of the UP-

Like.

Treatment: (1) lectures: expositive class; (2)

presentation of models and examples in-loco for groups

with difficulty; (3) technical explanation of the model

and its correct use; and (4) mandatory modeling of

MVC with UML sequence diagram for a better

understanding of logic model.

 TC7: constraint evidenced in all groups of Exp 1,

except group (G8); all groups of Exp 2 and groups (G2,

G5) in Exp 3. The constraint was observed in the 3rd

and 4th phases of (Exp 1 and Exp 2) and phases 2nd, 3rd

and 4th in Exp 3.

Treatment: (1) lectures on software tests, especially on

V & V test, unit test and functional test. (2) presentation

of examples in loco for the groups with difficulty in

carrying out the tests; (3) technical explanation on the

correct application of tests.

Some TC identified may not be found in processes

performed in the software industry, because in general, the

development teams in this environment are formed by

qualified and experienced professionals.

QUANTITATIVE ANALYSES

Quantitative research fits into the category of empirical

studies or statistical studies, which includes: experimental

studies, quasi-experiments, pre-tests, and post-tests [10].

According to Harwell [10], the objective of quantitative

methods is the maximization, replicability, generalization

of the results and the prediction of the researcher in relation

to their experiences, perceptions and prejudices.

Quantitative analysis will be used in this work to

understand the problems encountered in the SDP and to

validate the identified bottlenecks. The quantitative

analysis will also allow us to verify if the qualitative

constraints reflect on productive bottlenecks in the software

development process.

Quantitative Variables Analyzed

To measure quantitatively we use three dependent

variables: (1) Effort: time consumed; (2) Quality:

completeness and correctness; and (3) Difficulty: survey on

the difficulties perceived by the members of each team.

Effort Measured

Team effort is calculated from the number of hours worked

in each artifact. This is an important variable because it

allows visualizing anomalies in the development process

once a task that consumes a large number of hours has an

indication of the existence of qualitative constraints that

possibly going to cause a bottleneck in the productive

process.

Owing the limitation of the pages of this work, only the

quantitative data of the 3rd experiment (Exp 3) will be

presented. The complete analysis of the "quanti" data can

be found in the work of [19].

Quantitative Analysis of Effort

The first step in the quantitative analysis is to check the

spent time by teams to construct each artifact. Figure 4

shows the total time consumption (in minutes) of each

group.

Figure 4. Total time consumed by team of experiment 3

In fact, the activities that involve the creation of codes are

the most time consuming, including in the less efficient

teams.

Another interesting data is the fact that artifacts time-

consuming often involve more people to build. Table 4

shows the total time spent by each component (A, B, C and

D) of the development teams. Where is possible to observe

that the "Codes" and "Documentation" artifacts besides

consuming more time, also involves practically the whole

team. In the first analysis this does not show a productive

bottleneck, but it is a relevant factor that must be carefully

analyzed.

Team Architecture Codes Documentation Database Test

G
1

A 367 2517 1486 436 245

B 338 2159 400 549 736

C 533 2814 967 395 0

D 524 689 1025 579 0
Total 1762 8179 3878 1959 981

174

G
2

A 292 785 1092 822 0

B 120 650 1310 10 0

C 0 187 103 0 0

D 0 2917 0 840 0
Total 412 4539 2505 1672 0

G
4

 A 160 390 2887 120 660

B 40 2475 618 570 360

C 1670 2874 177 1784 1284

Total 1870 5739 3682 2474 2304

G
5

 A 120 2861 2040 1256 1124

B 370 9807 1297 594 0

C 0 0 1133 225 409
Total 490 12668 4470 2075 1533

Table 4. Total time spent by team members

Quality Measured

To define a factor to measure the quality of the artifacts in

each delivery, we created a scalar order of 0.0, 0.5, and

1.0.

We also use the same criterion for the overall assessment,

i.e, the average value of the product delivered by adding

the five artifacts. In order to quantify the quality of

deliverables, we use this same scale, considering only (0

and 1), being “0” for undelivered or partial delivered

artifact and “1” for artifact delivered (complete). This is

interesting because it allows the numerical visualization of

the production of each group for each delivery and by

artifact.

We also established an alphabetical order to arrange the

artifacts and consequently the assigned weight to generate

the corresponding binary number in each delivery.

Table 5 present the binary chain and decimal factor used to

measure the quality pf artifacts. Figure 5 presents two

graphics: (a) shows the evolution of the deliveries

according to the factor obtained by Table 5; and (b) shows

the percentage delivered by the groups in each phase of the

UP-Like.

 Factor to Measure Quality (Exp 3)

G
ro

u
p

Inception (Delivery 1) Elaboration (Delivery 2) Construction (Delivery 3) Transition (Delivery 4)

A
rc

h
it

ec
tu

re

D
at

ab
as

e

C
o

d
es

D
o

cu
m

en
ta

ti
o
n

T
es

t

D
ec

im
al

 f
ac

to
r

A
rc

h
it

ec
tu

re

D
at

ab
as

e

C
o

d
es

D
o

cu
m

en
ta

ti
o
n

T
es

t

D
ec

im
al

 f
ac

to
r

A
rc

h
it

ec
tu

re

D
at

ab
as

e

C
o

d
es

D
o

cu
m

en
ta

ti
o
n

T
es

t

D
ec

im
al

 f
ac

to
r

A
rc

h
it

ec
tu

re

D
at

ab
as

e

C
o

d
es

D
o

cu
m

en
ta

ti
o
n

T
es

t

D
ec

im
al

 f
ac

to
r

G1 1 1 1 0 1 29 0 1 1 0 1 13 1 1 1 1 1 31 1 1 1 1 1 31

G2 0 1 0 0 1 9 0 1 0 0 1 9 0 0 0 1 0 0 0 1 0 0 0 8

G4 1 1 1 1 1 31 0 1 0 0 1 9 1 1 1 1 1 31 1 1 0 1 1 27

G5 1 1 1 1 1 31 1 1 1 1 1 31 0 1 0 1 0 0 1 1 0 1 0 26

Table 5. Factor of convers of quality

Figure 5. (a) Evolution of Delivery by Groups (b) Percentage delivered by UP-like phases

Based on the numerical analysis of the Table 5 and the

graphical visualization of the Figure 5 (a) and (b), is

possible to notice the difference in the productivity of each

group in each delivery. The dispersion shown in figure 5

shows the evolution of deliveries, with delivery 2

(elaboration) being more problematic. This happened for

three reasons: (1) volume of task in the phase 2; (2) type of

tasks entered in the shop at this stage; and (3) deadline

syndrome [22] due to the prioritization of external

activities.

It’s also possible to observe that the two most time

consuming tasks, (1) coding: presented low quality in the

groups (G2, G4 and G5), especially in the delivery of phase

4; And (2) Documentation: presented low quality in the

groups: (G1) specifically in phase 1 and 2; And (G2) in the

4 phases of the process. The reasons for this may be the

qualitative characteristics of members of the development

teams.

175

Difficulty Measured

To measure the difficulty of the groups in performing the

tasks, a survey was elaborated with the following factors

and weights: 0-No difficulty, 1-few difficulty; 2-Moderate

difficulty; and 3-very much difficulty. The survey was

applied at the end of the execution of each UP-Like phase.

And the members were told to respond only in what they

participated.

Table 6 presents the weighted average of the Survey (μS),

obtained by each team/person.

Table 6. Difficulty presented by groups

Figure 6 presents the results measured with the survey.

Figure 6. Survey Measured

The perception of difficulty of the teams elected the

artifacts (Codes, Architecture and Documentation) as the

most difficult. Group (G2) also presented great difficulty

with database.

Descriptive Analysis

Clearly, after analyzing these three variables it is noticeable

that the activities that involve documentation, architectural

model and coding are the tasks that most require of the

development teams. We can consider that the construction

of these artifacts has restrictive elements that prevent the

maximization of production in the PDS. It is also noticeable

that these quantitative results have a direct correlation with

the qualitative results, given the technical and behavioral

characteristics of the people who work in software

construction.

Further Work

In future works, we intend to analyze which tasks that make

up the artifacts that really impact development, using the

same measurement criteria, but applied to specific tasks that

make up the artifacts analyzed here. Another front that can

be explored in the future is the application of this

experiment in the software industry to verify if the

problems found are the same or if it has some correlation

with the experiment realized in the academy. Thus we

intend to typify and validate the bottlenecks of the software

development process.

ACKNOWLEDGMENT

Sincere thanks to the students of the Department of

Computer Science at Federal University of Rio de Janeiro,

Fundamentals Software Engineering, class (2014/2, 2015/1

and 2015/2) that agreed and collaborated with this research.

CONCLUSION

For decades, the manufacturing industry has carried out

studies to identify bottlenecks in production processes,

especially with the application of TOC. In this aspect, the

software production still walks by very slow steps.

Identifying bottlenecks in the PDS, in fact, is a research

opportunity that must be better explored in order to reduce

the impacts on the process and consequently the cost of

projects of the software construction.

Although this study was carried out in a software

engineering learning environment, we believe that similar

studies can also be applied in the software industry. To this

end, some adjustments to the problem domain, the

development team, the SDP, and cultural and regional

aspects may be required.

The realization of this experimentation in an industrial

environment (real / professional) is a limitation of this work

that we intended to be carried out in the future. Because this

type of study can validate the evidences found in this

research or even generate new discoveries.

REFERENCES

1. Steve Adolph, Wendy Hall and Philippe Kruchten.

(2011) Using grounded theory to study the experience

of software development; Empirical Software

Engineering; Electrical and Computer Engineering –

University of British Columbia Vancouver Canada;

August, 2011, Vol. 16, Issue 4, pp. 487–513;
Vancouver – CA.

2. Raymond P. L. Buse, Thomas Zimmermann. (2012)

Information needs for software development analytics;

Proceeding; ICSE '12 Proceedings of the 34th

International Conference on Software Engineering;

IEEE Press Piscataway, NJ, USA ©2012 ; Pages 987-

996; Zurich, Switzerland — June 02 - 09, 2012 .

3. Jeffrey C. Carver, Letizia Jaccheri, Sandro Morasca

(2003) Issues in Using Students in Empirical Studies in

Software Engineering Education. Proceedings of the

Ninth International Software Metrics Symposium

(METRICS’03) 2003; IEEE Computer Society;

4. Paul Clarke and Rory V. O’Connor. (2012) The

situational factors that affect the software development

process: Towards a comprehensive reference

framework; Information and Software Technology,

Volume 54, Issue 5, May 2012, Pages 433–447

Survey: Difficulty Presented by Groups
Grupos Architecture Codes Documentation Database Test

G1 0,531 1,047 1,111 0,790 0,753

G2 1,377 1,839 1,216 1,613 0,868

G4 1,250 1,438 1,125 1,063 1,014

G5 1,227 1,378 1,396 0,979 1,375

176

http://www.sciencedirect.com/science/article/pii/S0950584911002369
http://www.sciencedirect.com/science/article/pii/S0950584911002369

5. Alfred S. Goldhaber, Michael M. Nieto (2010) "Photon

and graviton mass limits", Rev. Mod. Phys. (American

Physical Society); RevModPhys; 2010.Gupta, A.

Bhardwaj, A. Kanda (2010) Fundamental Concepts of

Theory of Constraints: An Emerging Philosophy; World

Academy of Science, Engineering and Technology

2010.

6. Elijah M. Goldratt, (2002) The Critical Chain; North

River Press; 2002; Reprint and Translated; Nobel Press,

São Paulo – SP; Brazil, 2006.Goldratt, E. M.; It's Not

Luck, Ed. The North River Press, 1993; Paperback

Reprint 2002.

7. Elijah M. Goldratt, Jeff Cox (2006) The Goal: A

Process of Ongoing Improvement; 2ª. Ed.; Nobel Press;

São Paulo – SP; Brazil; 2003; Reprint 2006.

8. Georgios Gousios, Martin Pinzger and Arie van

Deursen. (2014) An exploratory study of the pull-based

software development model; Proceeding ICSE

2014 Proceedings of the 36th International Conference

on Software Engineering; Pages 345-355; Hyderabad,

India — May 31 - June 07, 2014; ACM New York, NY,

USA ©2014.

9. Ajay Gupta, Arun Kanda, Arvind Bhardwaj (2010)

Fundamental Concepts of Theory of Constraints: An

Emerging Philosophy; World Academy of Science,

Engineering and Technology 2010.

10. Michael R. Harwell, (2011) M.R. Research design in

Qualitative, quantitative, and mixed methods (Chap 10)

in The Sage handbook for research in

education: Pursuing ideas as the keystone of exemplary

inquiry; 2nd Edition; SAGE Publications; Thousand

Oaks, CA; 2011.

11. Seonmin Kim, Victoria J. Mabin, John Davies (2008)

The Theory of Constraints Thinking Processes:

retrospect and prospect; International Journal of

Operations & Production Management; Vol. 28, Nr. 2

pp. 155-184, Emerald Group Publishing Limited;

Wellington, New Zealand; 2008.

12. Gwanhoo Lee and Weidong Xia. (2010) Toward Agile:

An Integrated Analysis of Quantitative and Qualitative

Field Data on Software Development Agility; MIS

Quarterly; Vol. 34, No. 1 (March 2010), pp. 87-114

13. Laurie McLeod and Stephen G. MacDonell. (2011)

Factors that affect software systems development

project outcomes: A survey of research; The ACM

Computing Surveys (CSUR) Journal; Volume 43 Issue

4, October 2011 ; Article No. 24; ACM New York, NY,

USA.

14. Isadore Newman, Carolyne R. Benz (1998) Qualitative-

Quantitative Research Methodology: Exploring the

Interactive Continuum; Southern Illinois University

Press; Carbondale - IL; 1998.

15. Agneta Nilsson, Laura M. Castro, Samuel Rivas and

Thomas Arts (2016) Assessing the effects of introducing

a new software development process: a methodological

description International Journal on Software Tools for

Technology Transfer February 2015, Volume

17, Issue 1, pp 1–16; Springer Link; 2016.

16. Shamuvel V. Pandit, Girish R. Naik (2009) Application

Of Theory Of Constraints On Scheduling Of Drum-

Buffer-Rope System; Second International Conference

on Emerging Trends in Engineering (SICETE); IOSR

Journal of Mechanical and Civil Engineering (IOSR-

JMCE), 2009.

17. Shams-ur Rahman (1998) Theory of Constraints: A

review of the philosophy and its applications, Perth,

Australia International Journal of Operations e

Production Management; vol.08 nr.04 pp336-355 1998.

18. Austen Rainer and Tracy Hall. (2013) A quantitative

and qualitative analysis of factors affecting software

processes, Journal of Systems and Software - Elsevier;

Volume 66, Issue 1, 15 April 2003, Pages 7–21.

19. Sildenir A. Ribeiro (2017) Bottlenecks Identification in

Software Development Process: A Proposal Based on

the Principles of the Theory of Constrains; Doctoral

Thesis; The Tércio Pacitti Institute; PPGI-Post Graduate

Program in Informatics; UFRJ; Rio de Janeiro/RJ –

Brazil; 2017.

20. Sildenir A. Ribeiro, Eber A. Schmitz and Antônio

Juarez A. S. M. de Alencar. (2015) Bottleneck

Identification in Software Development Processes: A

Proposal Based on the Principles of the Theory of

Constraints; Proceedings of 2015 IEEE 10th

International Conference on Global Software

Engineering (ICGSE 2015).

21. Sildenir A. Ribeiro, Eber A. Schmitz, Antonio J. S. M.

Alencar, Monica F. da Silva (2017) Research

Opportunities on the Application of the Theory of

Constraints to Software Process Development; Journal

of Software vol. 12, no. 4, pp. 227-239, 2017.

22. Sildenir A. Ribeiro, Eber A. Schmitz, Antonio J. S. M.

Alencar, Monica F. da Silva (2017) The Deadline

Syndrome: Origin, Causes and Implications in the

Software Development Process; vol. 10, No. 2, pp.30-

47; ISYS-Brazilian Journal of Information Systems -

SBC-Brazilian Computer Society; Rio de Janeiro-RJ;

june-2017.

23. Eli Schragenheim, H. William Dettmer (2000) A Whole

System Approach to High Velocity Manufacturing:

Simplified Drum-Buffer-Rope; Optimizing Supply

Chain Business Performance. Boca Raton, FL: St. Lucie

Press, 2000.

24. Sankar Sengupta, Kanchan Das, Robert P. Vantil

(2008). A New Method for Bottleneck Detection;

Proceedings of the 2008 Winter Simulation Conference.

IEEE Xplorer; 2008.

25. Claes Wohlin; Per Runeson; Martin Höst, Magnus

Ohlsson; Björn Regnell, Annika Wesslén (2012)

Experimentation in Software Engineering; Springer-

Verlag Berlin Heidelberg , 2012.

177

http://en.wikipedia.org/wiki/Rev._Mod._Phys.
http://dx.doi.org/10.1103%2FRevModPhys.82.939
http://dl.acm.org/author_page.cfm?id=81351592431&coll=DL&dl=ACM&trk=0&cfid=768950736&cftoken=54120901
http://dl.acm.org/author_page.cfm?id=81100010391&coll=DL&dl=ACM&trk=0&cfid=768950736&cftoken=54120901
http://dl.acm.org/author_page.cfm?id=81100050168&coll=DL&dl=ACM&trk=0&cfid=768950736&cftoken=54120901
http://dl.acm.org/author_page.cfm?id=81100050168&coll=DL&dl=ACM&trk=0&cfid=768950736&cftoken=54120901
http://icse2014.acm.org/
http://icse2014.acm.org/
http://www.acm.org/publications
http://www.acm.org/publications
https://link.springer.com/journal/10009
https://link.springer.com/journal/10009
http://www.sciencedirect.com/science/article/pii/S0164121202000596
http://www.sciencedirect.com/science/article/pii/S0164121202000596
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212/66/1

